首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicting the residual energy of the battery source that powers a portable electronic device is imperative in designing and applying an effective dynamic power management policy for the device. This paper starts up by showing that a 30% error in predicting the battery capacity of a lithium-ion battery can result in up to 20% performance degradation for a dynamic voltage and frequency scaling algorithm. Next, this paper presents a closed form analytical expression for predicting the remaining capacity of a lithium-ion battery. The proposed high-level model, which relies on online current and voltage measurements, correctly accounts for the temperature and cycle aging effects. The accuracy of the high-level model is validated by comparing it with DUALFOIL simulation results, demonstrating a maximum of 5% error between simulated and predicted data.  相似文献   

2.
聚酰亚胺在氧基工作气体中的反应离子深度刻蚀研究   总被引:2,自引:0,他引:2  
主要研究了不同的反应离子刻蚀条件(氧基工作报体、刻蚀功率、工作气压等)下所获得的不同刻蚀效果。当以O2/CHF3作为工作气体时,在一定的工艺条件下实现了高深宽比(深度23μm,深宽比〉7)、侧壁陡直光滑、底面平整光滑的刻蚀效果;同时还观察到随着CHF3浓度的增加,侧壁形状经历了外倾、垂直、内倾的变化规律。利用CF2印化保护模型可很好地解释决这一现象。  相似文献   

3.
Lithium-ion batteries are the main power supply equipment in many fields due to their advantages of no memory, high energy density, long cycle life and no pollution to the environment. Accurate prediction for the remaining useful life (RUL) of lithium-ion batteries can avoid serious economic and safety problems such as spontaneous combustion. At present, most of the RUL prediction studies ignore the lithium-ion battery capacity recovery phenomenon caused by the rest time between the charge and discharge cycles. In this paper, a fusion method based on Wasserstein generative adversarial network (GAN) is proposed. This method achieves a more reliable and accurate RUL prediction of lithium-ion batteries by combining the artificial neural network (ANN) model which takes the rest time between battery charging cycles into account and the empirical degradation models which provide the correct degradation trend. The weight of each model is calculated by the discriminator in the Wasserstein GAN model. Four data sets of lithium-ion battery provided by the National Aeronautics and Space Administration (NASA) Ames Research Center are used to prove the feasibility and accuracy of the proposed method.  相似文献   

4.
用气相沉积法(CVD)和转移法制备了石墨烯,用超声分散及搅拌的方法分别制备了导电碳黑(SP)导电浆料,导电碳黑(SP)、碳纳米管(CNTs)复合导电浆料(SP/CNTs)及导电碳黑(SP)、碳纳米管(CNTs)和石墨烯(G)复合导电浆料(SP/CNTs/G),通过扫描电镜(SEM)、四探针测试、恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)等方法研究了导电剂对锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的表面形貌、电阻率和电化学性能的影响。结果表明:添加质量分数2%复合导电剂SP/CNTs/G的样品电阻率较小,0.2 C首次充放电比容量分别为201.93 m Ah·g~(–1)和180.29 m Ah·g~(–1),首次充放电效率为89.28%。3.0C循环5次后的放电比容量为161.45 m Ah·g~(–1),容量保持率仍有89.69%,1.0C循环50次后放电比容量为166.97 m Ah·g~(–1),容量保持率为96.65%,倍率和循环性能优良。  相似文献   

5.
A glucose biosensor based on a high-transconductance ISFET transduction element with aspect ratio (channel width/length) of 400 has been developed. This biosensor is an N-channel enhancement mode device with interdigitated drain-source geometry, fabricated by the NMOS process, in which glucose oxidase (GOD) enzyme has been immobilized over the silicon dioxide-silicon nitride dual-dielectric gate. The device has been operated in the active mode by applying a gate voltage through Ag/AgCl reference electrode. Electrical characterization has been performed in terms of I-V characteristics like output characteristics and leakage current. The pH response characteristics have been measured and the pH sensitivity factor has been found to be?≥?50?mV/decade. Device characterization has also been performed by a signal conditioning circuit developed for direct readout of pH from the ISFET device. Temperature behaviour and drift phenomenon have been investigated.

The glucose response characteristics of the ISFET have been determined, without and with the glucose oxidase enzyme layer. Improvement of the glucose sensitivity by deposition of the enzyme layer has been studied and cross-sensitivity of the device towards urea has been examined. The advantage of the high transconductance was evident from the ability of the sensor to detect small glucose concentrations without the enzyme layer. The paper describes the design, fabrication and characterization of the sensor.  相似文献   

6.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的研究进展   总被引:1,自引:0,他引:1  
层状结构的LiNi1/3Co1/3Mn1/3O2正极材料具有比容量高、循环性能优异、成本较低和对环境友好的特点.综述了锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料最近几年的研究现状与进展,并对其晶体结构特征、合成方法、掺杂与包覆改性以及表面修饰进行了评述,提出了目前锂离子电池正极材料研究中存在的问题,并对它未来的发展趋势进行了展望.  相似文献   

7.
以CuBi2(V2O5)(简称为CBV)低熔点氧化物为烧结助剂,采用传统的固相烧结工艺制备了CBV掺杂的Li2O-ZnO-TiO2系微波陶瓷。并利用XRD、SEM等研究了Li2O-ZnO-TiO2系陶瓷的烧结行为、物相组成、显微结构及微波介电性能等。结果表明:当CBV掺杂量为质量分数3.25%时,875℃烧结的Li2O-ZnO-TiO2陶瓷微波具有良好的微波介电性能:εr=25.63,Q·f=53400GHz,τf=–5.27×10–6/℃。  相似文献   

8.
采用辐照凝胶法制备了锂离子电池正极用LiNi1/3Co1/3Mn1/3O2粉体材料。采用XRD、SEM和电化学充放电测试对制备材料的结构和性能进行了表征。结果表明:900℃制得的样品具有较好的层状结构,结晶性适中,电化学性能优异:其首次放电容量高达184mA·h/g(2.80~4.50V,C/10),30次循环后的容量保持率为87.4%,表现出较好的充放电容量和循环性能,较之850,950℃煅烧样品具有最小的交流阻抗和直流阻抗。  相似文献   

9.
Electrolytes were prepared with different LiBF4 salt concentrations in the ratio of 2:1 (w/w) Ethylene Carbonate (EC): Dimethyl Carbonate (DMC) solvents. Different LiBF4 concentrations were used in the electrolytes to assemble half-cells containing metallic Li anode and nanostructured LiMn2O4 cathode material. To investigate the effect of LiBF4 salt concentration on the electrochemical performance of nanostructured LiMn2O4 cathode material, electrochemical tests were performed at room temperature. For LiBF4–EC–DMC based electrolytes, the optimum LiBF4 salt concentration was found and results showed that higher salt concentration provides higher electrochemical capacity for the bare nanostructured LiMn2O4 cathode materials but did not result in preventing capacity fade due to electrode degradation.  相似文献   

10.
研究了少量MnO2添加对Pb(Ni1/3Nb2/3)O3基复相陶瓷的介电常数温度特性和频率特性、介质损耗及电阻率的影响。结果表明,少量MnO2的加入,改善了复相陶瓷的介温特性和频率特性,降低了介电常数;同时降低了介质损耗,特别是低频高温下的介质损耗,提高了电阻率。对MnO2在复相陶瓷中所起的作用进行了分析。  相似文献   

11.
Battery life prediction is critical for lithium/thionyl chloride cells with a long storage life. The objective of this study was to develop models for rapidly estimating the storage life of Li/SOCl2 cells using the semiempirical approach. An accelerated degradation test involving numerous cells stored at various temperatures (room temperature or RT, 40, 50, 60, and 70 °C) was conducted to investigate the effect of the storage time and temperature on capacity degradation. The degradation law can be summarized on the basis of the test data for constructing the semiempirical equation; this law demonstrates that the residual capacity of aging cells exponentially changes with the storage time and temperature. The degradation data are also used for parameterization with the multiple nonlinear curve fitting method based on the universal global optimization algorithm. According to the simulation and comparison between the experimental data and prediction curve, the fitting prediction curve accurately fits the experimental data. This finding indicates that the semiempirical model is useful because of its satisfactory ability to approximate the measured data. In addition, characteristic values of the battery, including the storage life under various storage conditions, average self-discharge rate, and acceleration factor, can be calculated on the basis of the mathematical model.  相似文献   

12.
Amorphous (Al2O3)x(SiO2)y thin films have been grown by atmospheric pressure metal-organic chemical vapour deposition using the single-source precursor [Al(OSiEt3)3]2. Characterisation by X-ray photoelectron spectroscopy indicated that the films consisted of a mixture of Al2O3, SiO2 and an aluminosilicate. The relative amount of each species was dependent on the deposition temperature and the carrier gas composition. Use of NH3 as the carrier gas resulted in the increased volatility of the precursor by the in situ formation of the low-melting Lewis acid–base adduct Al(OSiEt3)3(NH3); however, no nitrogen incorporation was observed in these deposited films.  相似文献   

13.
Wavelet-like transformations have been used in the past to compress dense large matrices into a sparse system. However, they generally are implemented through a finite impulse response filter realized through the formulation of Daubechies (1992). A method is proposed to use a very high order filter (namely an ideal one) and use the computationally efficient fast Fourier transform (FFT) to carry out the multiresolution analysis. The goal here is to reduce the redundancy in the system and also guarantee that the wavelet coefficients drop off much faster. Hence, the efficiency of the new procedure becomes clear for very high order filters. The advantage of the FFT-based procedure utilizing ideal filters is that it can be computationally efficient and for very large matrices may yield a sparse matrix. However, this is achieved, as well known in the literature, at the expense of robustness, which may lead to a larger reconstruction error due to the presence of the Gibb's phenomenon. Numerical examples are presented to illustrate the efficiency of this procedure as conjectured in the literature  相似文献   

14.
La2O3 films were grown by atomic layer deposition technique using a novel formamidinate precursor, tris(N,N′-diisopropylformamidinato) lanthanum [La(iPrfAMD)3], with H2O and O3 as an oxidant. La2O3 films grown with H2O in the film exhibited a parasitic chemical vapor deposition type growth possibly due to a La(OH)x component. However, the use of O3 as the oxidant revealed a stable ALD process window. A post-deposition annealing (PDA) of the deposited La2O3 films using O3 significantly reduces leakage current density by four orders of magnitude relative to as-deposited samples. The dielectric constant of La2O3 films with a TaN metal gate is found to be ~29, which is higher than reported values for CVD and ALD La2O3 films.  相似文献   

15.
Lithium-bearing iron and nickel pyrophosphate crystals were synthesized by hydrothermal techniques at relatively moderate PT conditions. The XRD data revealed that both compounds were crystallized in a monoclinic system with respective cell parameters. Thermal behavior and structural coordination of the prepared materials were investigated using DTA/TGA and FTIR measurements, respectively. Magnetic results have revealed that these are frequency- and temperature-dependent prospective paramagnetic materials.  相似文献   

16.
LiNi0.8Co0.1Mn0.1O2 cathode material is prepared by sol-gel method and the effects of Nb5+ doping and different calcination temperatures on cathode materials were deeply investigated. Structural and morphological characterizations revealed that the optimal content of 1 mol% Nb5+ can stabilize layered structures, mitigate Ni2+ migration to Li layers, improve lithium diffusion capacity, and reduce lattice expansion/shrinkage while cycling. And calcination temperature at 800 °C can not only ensure good morphology, but also suppress the mixed discharge of lithium and nickel in the internal structure. Electrochemical performance evaluation revealed that Nb5+ doping improves the discharge-specific capacity of the material, which is conducive to ameliorating its rate capability and cycle performance. And the material at 800 °C exhibits the highest discharge specific capacity, the best magnification performance, low polarizability, and the best cycle reversibility.  相似文献   

17.
LiCe掺杂对铋层材料K0.5Bi2.5Nb2O9的影响   总被引:1,自引:0,他引:1  
用传统固相烧结法获得了含A位空位的(KBi)0.5-x(LiCe)x/2 x/2Bi2Nb2O9(其中为A位[KBi]空位)系列铋层陶瓷,研究了A位LiCe掺杂替代对K0.5Bi2.5Nb2O9系列陶瓷性能的影响。LiCe掺杂改性明显提高了K0.5Bi2.5Nb2O9系列陶瓷的压电活性,(KBi)0.44(LiCe)0.03 0.03Bi2Nb2O9陶瓷的压电系数d33、平面机电耦合系数kp和厚度振动机电耦合系数kt分别为31 pC/N、5%和22%。  相似文献   

18.
Industry is defining a new generation of mobile wireless technologies, called in cellular terminology "fourth generation" or "4G." This article shows that a system combining extensions of two radio access technologies, IEEE 802.11 and IEEE 802.16, meets the ITU-R's "IMT-Advanced" or 4G requirements. The extensions are 802.16 m (100 Mb/s, 250 km/h) and 802.11VHT (1 Gb/s, low velocity). The focus of this article is to show how IEEE 802.21 (the emerging IEEE standard for media-independent handover services) supports ";seamless"; mobility between these two radio access technologies. This mobility integrates the two radio access technologies into one system. We conclude that an 802.11VHT + 802.16 m + 802.21 system is likely to be proposed to the ITU-R for IMT- Advanced 4G.  相似文献   

19.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   

20.
以硫酸溶解废旧镍氢电池所得溶液为原料,采用溶胶–凝胶法制备出纳米晶镍钴铁氧体。借助于XRD、TG和VSM对产品的相结构和磁性能进行研究,并进一步探讨制备过程中的影响因素。结果表明,溶胶–凝胶法制备镍钴铁氧体的适宜条件为:柠檬酸与金属离子总量的摩尔比1:1,溶液的pH值7.0,煅烧温度850℃,煅烧时间3 h。该条件下所制得产品的剩余磁化强度为13.635 A.m2/kg,矫顽力为32.5 kA/m,饱和磁化强度为50.713 A.m2/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号