首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陶瓷材料微波烧结研究   总被引:17,自引:1,他引:17  
陶瓷微波烧结技术是一门具有实用价值和应用前景的新颖烧结技术。它与常规烧结法相比具有:(1)改进材料的显微结构和宏观性能;(2)省时节能;(3)极高的升温速率等优点。本文对微波烧结的优点、机理、设备、工艺及发展和展望进行了分析和讨论。  相似文献   

2.
微波烧结关键技术的进展   总被引:22,自引:0,他引:22  
张劲松  曹丽华 《材料导报》1994,(2):34-37,22
归纳了阻碍微波烧结技术实用化的关键技术问题,介绍并评述了最近五年国内外学者在解决这些问题方面所取得的重要进展。  相似文献   

3.
4.
5.
闪烧技术是一种温度场与电场耦合的烧结技术,具有低温快速传质的特性,在高熵陶瓷的合成上具有显著的优势。本研究通过闪烧法合成了相对致密的高熵氧化物陶瓷(MgCoNiCuZn)O,并与传统烧结试样的性能进行了对比。在室温,电场强度为50 V/cm,电流密度为300 mA/mm2条件下闪烧,物相转变的时间仅为10 s。闪烧试样最高相对密度为94%,比传统烧结试样最高密度提高了22.8%。闪烧试样的最高硬度5.05GPa,比传统烧结试样高3.95 GPa。当频率<2Hz时,闪烧试样的介电常数比传统烧结试样高一个数量级。闪烧试样性能的提高,一方面与临界电场加速传质,提高材料致密度有关;另一方面与临界电场引入额外的缺陷有关。  相似文献   

6.
Novel sintering methods have emerged in the recent past years, which have raised great interest in the scientific community. Relying on electric field effects, high heating rates, the use of mechanical pressure, or hydrothermal conditions, they offer fundamental advantages compared to conventional sintering routes like minimizing the energy consumption and enhancing the process efficiency. This perspective aims at explaining these effects in a general way and presenting the status quo of using them for the processing of high-performing ceramic materials. In detail, this work focuses on flash sintering, ultrafast high-temperature sintering, spark plasma sintering, cold sintering, and photonic sintering methods based on different light sources. The specificities, potentials, and limitations of each method are compared, especially in the light of a possible industrialization.  相似文献   

7.
王海波  龚艳  肖奇  张清岑 《材料导报》2006,20(8):136-139
探讨了合成Pb1.5Nb2O6.5型微波介质陶瓷粉体的焙烧温度、焙烧时间、添加剂等不同工艺因素对Pb1.5-Nb2O6.5粉体物相变化、晶粒生长及形貌的影响,采用X射线衍射(XRD)和扫描电子显微镜(SEM)对制备的粉体进行物相与晶体形貌检测.实验结果表明在其他工艺因素控制得当时,焙烧温度对粉体粒度和物相变化的影响最大,而不同类型的添加剂不仅可以使晶粒生长更为完整,尺寸增大,同时也可以不同程度地改变粉体颗粒的生长趋势与形貌.实验制备出的Pb1.5Nb2O6.5粉体物相单一无杂质、晶粒尺寸较小,适于进一步制备微波介质陶瓷元件.  相似文献   

8.
影响ZTA陶瓷微波烧结的主要工艺过程   总被引:6,自引:0,他引:6  
通过对ZTA陶瓷进行微波烧结试验,了解影响陶瓷微波烧结速率的主要工艺过程,探索有关微波烧结机理;采用以TE444为基准模式的微波谐振腔,在混合加热模式的基础上增设辅助加热体,实现了ZTA陶瓷微波烧结; ZTA材料中ZrO含量越高,该材料的烧结速率越快;输入功率的提高有助于提高烧结速率;辅助加热体的老化现象降低微波烧结速率;微波烧结过程中应避免出现热剧变现象.  相似文献   

9.
微波烧结CuTi-金刚石复合体   总被引:4,自引:0,他引:4  
采用微波烧结方法制备出CuTi-金刚石复合体,并对复合体的工艺、组织和结构进行了研究.结果表明,金刚石颗粒在烧结过程中没有发生石墨化转变,CuTi-金刚石复合体中金刚石颗粒与CuTi基体间能形成良好的结合.CuTi-金刚石复合体的致密度随金刚石含量的增加出现先增加后降低的变化趋势,当金刚石含量为18.75~25vol%时达到最大值.  相似文献   

10.
A major challenge in plasmonic hot spot fabrication is to efficiently increase the hot spot volumes on single metal nanoparticles to generate stronger signals in plasmon‐enhanced applications. Here, the synthesis of designer nanoparticles, where plasmonic‐active Au nanodots are selectively deposited onto the edge/tip hot spot regions of Ag nanoparticles, is demonstrated using a two‐step seed‐mediated precision synthesis approach. Such a “hot spots over hot spots” strategy leads to an efficient enhancement of the plasmonic hot spot volumes on single Ag nanoparticles. Through cathodoluminescence hyperspectral imaging of these selective edge gold‐deposited Ag octahedron (SEGSO), the increase in the areas and emission intensities of hot spots on Ag octahedra are directly visualized after Au deposition. Single‐particle surface‐enhanced Raman scattering (SERS) measurements demonstrate 10‐fold and 3‐fold larger SERS enhancement factors of the SEGSO as compared to pure Ag octahedra and non‐selective gold‐deposited Ag octahedra (NSEGSO), respectively. The experimental results corroborate well with theoretical simulations, where the local electromagnetic field enhancement of our SEGSO particles is 15‐fold and 1.3‐fold stronger than pure Ag octahedra and facet‐deposited particles, respectively. The growth mechanisms of such designer nanoparticles are also discussed together with a demonstration of the versatility of this synthetic protocol.  相似文献   

11.
Electric current-assisted sintering (ECAS) is a promising powder consolidation technique that can achieve short-term sintering with high heating rates. Currently, main methods of performing ECAS are indirect heating of the powder compact in a conductive tool or direct heating with current flowing through the powder compact. Various influencing factors have been identified to explain the rapid densification during ECAS, such as ultrahigh heating rates, extra-high temperatures, and electric field. However, the key consolidation-enhancing factor is still under debate. This study aims at understanding the role of heating rate on the enhanced densification during ECAS of 8 mol% Y2O3-stabilized ZrO2 (8YSZ) by experimental and numerical methods. Two different heating modes, ultrafast high-temperature sintering (UHS, indirect heating) and flash sintering (FS, direct heating), are studied. The novel UHS technique is successfully applied to consolidate the 8YSZ samples. Additionally, finite element methods (FEM) combined with a constitutive model is adopted to predict the densification and grain growth. Furthermore, a comparison of UHS and FS is performed to investigate the thermal effect (heating rate) and athermal effect (electric field) individually. The results indicate that the high heating rate is the key factor of the rapid densification during UHS and FS of 8YSZ.  相似文献   

12.
ZnO压敏陶瓷的微波烧结   总被引:7,自引:0,他引:7  
对用纳米粉体制备的ZnO压敏生坯进行了微波烧结,通过XRD、SEM分析和电性能测试,与普通烧结比较,微波烧结可使ZnO压敏材料快速成瓷,显著缩短烧结时间;在相同晶粒尺寸下,微波烧结温度更低,瓷体更致密;并能获得较好电性能.微波烧结为ZnO压敏陶瓷材料制备提供了一条新的、高效节能的途径.  相似文献   

13.
Herein, hot-spot generation in bulk barium titanate samples is investigated during controlled current ramping at various rates using in situ dilatometry. The incubation of the flash event is separated from dielectric breakdown at high current densities, which has previously been attributed to cause flash incubation in barium titanate. The lower boundary of the onset temperature of the flash event in barium titanate is investigated through conventional flash experiments at high electric fields. Despite incubating through thermal runaway, the lower boundary does not coincide with the Debye temperature of barium titanate.  相似文献   

14.
氧化锌压敏电阻微波烧结行为的研究   总被引:3,自引:0,他引:3  
采用微波和传统烧结工艺制备了ZnO压敏电阻,比较了微波和传统烧结ZnO压敏电阻的相组成、表面微观结构和电性能,探讨了烧结温度和保温时间对微波烧结样品的致密化和电性能的影响.与传统工艺相比,微波烧结工艺明显改善了ZnO压敏电阻的致密化行为,缩短了烧结周期,改善了电性能.优化的微波烧结样品的压敏电压U1mA为521.8V,非线性系数α是61.4,漏电流IL为1.25×10-6A,残压比Kr为1.45,通流量Im达11600A,均达到或超过了传统工艺水平.微波烧结样品的通流量Im更是比传统烧结样品高约50%.  相似文献   

15.
16.
The microwave absorbing behaviour of Mn-Zn ferrite sintered at 1100,1200,1300,1400 and1500℃ has been investigated.The phase constitution of the ferrite was analyzed by X-raydiffraction.The results show that the ferrite sintered at 1 500℃ has better microwave absorbing prop-erty than those prepared at other temperatures,due to the increase of turbulent loss generated by theformation of excessive Fe~(2+) in deoxidizing of Fe_2O_3 at high temperatures.  相似文献   

17.
闪烧是近些年广受关注的一种电场辅助烧结技术。本文介绍了闪烧的起源与发展, 并对闪烧的基本特征进行了分析。在闪烧孕育与引发过程的研究方面, 发现了孕育阶段的非线性电导特征和电化学黑化现象, 提出了氧空位主导的缺陷机制; 在闪烧阶段的快速致密化研究方面, 提出了电场作用导致的缺陷产生和运动会在粉体颗粒间产生库仑力, 有利于烧结前期的致密化过程, 同时发现闪烧致密化过程中还伴随着金属阳离子的快速运动; 在闪烧阶段的晶粒生长和微结构演变方面, 发现了试样温度沿电流方向呈非对称分布, 试样中间位置的晶界迁移率明显提高, 提出电化学缺陷对微观结构有重大影响。基于上述研究成果, 本团队利用电场作用下出现的低温快速传质现象, 发展了陶瓷闪焊技术, 实现了同种陶瓷/陶瓷、陶瓷/金属, 甚至异种陶瓷/陶瓷之间的快速连接; 发展了陶瓷闪烧合成技术, 不仅实现了典型氧化物陶瓷的快速合成, 而且实现了高熵陶瓷和具有共晶形貌的氧化物陶瓷的快速合成; 发展了氧化物陶瓷的电塑性成形技术, 初步实现了氧化锆陶瓷低温低应力下的快速拉伸和弯曲变形。本文最后总结了闪烧机理研究面临的挑战, 并从焦耳热效应和非焦耳热效应两方面展望了闪烧的发展方向, 期望对闪烧技术在国内的发展有所裨益。  相似文献   

18.
以WC粉为基体,Co为粘结相,TiC颗粒为抑制剂,通过球磨、压制成型,微波烧结制备WC-TiC-Co硬质合金.结果表明,在1360℃微波烧结为液相烧结,Co与WC会发生反应生成η相(Co3W3C).随TiC含量升高,合金的晶粒逐渐变得均匀细小,合金的相对密度、硬度和抗弯强度均先升高后下降,硬度在0.5%TiC时达到最高值,相对密度和抗弯强度在1.0%TiC时达到最高值.  相似文献   

19.
微波介质陶瓷作为现代移动通讯中的关键基础材料,以其优异的介电性能已成为现代微波通讯技术的研究重点之一,而BaO-TiO2体系中的BaTi4O9微波介质陶瓷由于具有微波介电性能优异、制备工艺简单以及成本低等优点,已经成为微波介质陶瓷研究领域的热点.从BaTi4O9微波介质陶瓷的结构与性能入手,介绍了BaTi4O9陶瓷的制备工艺、方法及其在器件方面的应用,概述了BaTi4O9微波介质陶瓷在低温烧结方面的研究进展.  相似文献   

20.
采用部分共沉淀法制备锆钛酸铅镧(PLZT)粉体, 分别用普通马弗炉和微波马弗炉进行烧结成瓷, 对比分析不同烧结方法对PLZT陶瓷的晶体结构、微观形貌和电学性能的影响。结果表明: 微波烧结和常规烧结均成功制备出钙钛矿相PLZT陶瓷。采用微波烧结得到的PLZT陶瓷样品比常规烧结的晶粒细小, 尺寸更均匀, 孔洞较少; 在电学性能相近时, 微波烧结温度远低于常规烧结, 且保温时间远小于常规烧结。在1000℃进行微波烧结, 陶瓷的介电常数εr和压电常数d33最大, εr为2512, d33为405 pC/N, 此时, 剩余极化强度为16.5 kV/cm, 矫顽场为8.2μC/cm2; 在1250℃常规烧结, 陶瓷的介电常数最大, 为2822, 压电常数最大, 为508 pC/N, 剩余极化强度为21.6 kV/cm, 矫顽场为9.6μC/cm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号