首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Hydrogen storage in traditional metallic hydrides can deliver about 1.5 to 2.0 wt pct hydrogen but magnesium hydrides can achieve more than 7 wt pct. However, these systems suffer from high temperature release drawback and chemical instability problems. Recently, big improvements of reducing temperature and increasing kinetics of hydrogenation have been made in nanostructured Mg-based composites. This paper aims to provide an overview of the science and engineering of Mg materials and their nanosized composites with nanostructured carbon for hydrogen storage. The needs in research including preparation of the materials, processing and characterisation and basic mechanisms will be explored. The preliminary experimental results indicated a promising future for chemically stable hydrogen storage using carbon nanotubes modified metal hydrides under lower temperatures.  相似文献   

2.
储氢材料研究进展   总被引:2,自引:0,他引:2  
氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属(合金)储氢、碳基储氢、有机液体储氢、络合物储氢、硼烷氨储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。  相似文献   

3.
氢能的有效开发和应用主要需解决氢的安全、高效储运瓶颈问题。MgH_2具有高储氢容量、资源丰富以及成本低廉等优点,被认为是最具发展前途的一类储氢材料。但是,MgH_2较高吸放氢温度和较慢吸放氢速率限制了其实际应用。核壳结构纳米镁基储氢材料有助于材料储氢性能的改善,目前已取得了大量成果。本文针对国内外纳米镁基核壳结构储氢体系研究现状,归纳了该类储氢材料的制备方法,重点阐述和总结了其吸放氢热力学动力学性能、微观结构、物相变化,并对该领域的研究成果和方向进行了总结和展望,指出调控核壳结构镁基材料的纳米尺寸、添加高效纳米催化剂及其综合协同作用是镁基储氢材料领域未来的研究趋势和重要研究方向。  相似文献   

4.
高容量储氢材料的研究进展   总被引:6,自引:0,他引:6  
氢能是一种理想的二次能源.氢能开发和利用需要解决氢的制取、储存和利用3个问题,而氢的规模储运是现阶段氢能应用的瓶颈.氢的储存方法有高压气态储存、低温液态储存和固态储存等3种.固态储氢材料储氢是通过化学反应或物理吸附将氢气储存于固态材料中,其能量密度高且安全性好,被认为是最有发展前景的一种氖气储存方式.由轻元素构成的轻质高容量储氢材料,如硼氢化物、铝氢化物、氨摹氢化物等,理论储氢容量均达到5%(质量分数)以上,这为固态储氢材料与技术的突破带来了希望.新型储氢材料未来研究的重点将集中于高储氢容量、近室温操作、可控吸/放氢、长寿命的轻金属基氢化物材料与体系.  相似文献   

5.
高容量储氢材料的研究进展   总被引:1,自引:1,他引:0  
高容量储氢材料在燃料电池和储热等方面有着良好的潜在应用.从高体积密度(kg/m3)和高储氢质量分数两个方面综述了高容量储氢材料的国内外研究近况.从材料组成、制备工艺、材料的组织结构以及催化剂应用等方面重点评述了Mg2FeH6、LiBH4、NaBH4、LiAlH4、NaAlH4等储氢材料的研究进展,指出高容量储氢材料今后中长期研究的重点是NaAlH4、Mg2 FeH6等络合氢化物以及催化剂.  相似文献   

6.
本文论述了贮氢材料工作原理,氢化物形成热力学和动力学问题,总结了目前三大系列,15种适用的贮氢合金的成分,性能和 P-T-C 曲线。文章介绍了贮氢材料在贮氢、输送氢,氢气纯化,热泵,空调,氢压缩机,燃氢汽车等方面的多种用途。本文不仅概括了许多最新资料,而且总结了作者多年来从事贮氢材料研究的经验和体会。  相似文献   

7.
Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy‐related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi‐shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium‐ion batteries and hybrid supercapacitors, sulfur hosts for lithium–sulfur batteries, and electrocatalysts for oxygen‐ and hydrogen‐involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy‐related applications.  相似文献   

8.
There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.  相似文献   

9.
The objective of this article is to overview processes of mechanical alloying/milling (MA/MM), and their modifications applied to produce nanostructured single- and multi-phase intermetallics, and their composites, for hydrogen storage. In the most typical processing, MA is used as a preliminary step in synthesizing a nanostructured intermetallic powder starting from elemental metal powders. In a subsequent step, the intermetallic powder is hydrogenised under high pressure of hydrogen to produce nanostructured intermetallic hydride. A modified processing variant combines the synthesis of nanostructured intermetallic and its subsequent hydrogenising in one step by MA of elemental metal powders directly under hydrogen atmosphere to form nanostructured intermetallic hydrides (so-called Reactive Mechanical Alloying—RMA). The MM can be applied to produce nanostructured intermetallic powders from pre-alloyed intermetallic cast ingots or to manufacture nanocomposites, by mixing with dissimilar material before milling, which could be hydrogenised in a separate process. In addition, pre-alloyed bulk intermetallics can be mechanically milled directly under hydrogen atmosphere (Reactive Mechanical Milling—RMM) in order to obtain nanostructured intermetallic hydrides as a final product. All the above processes are critically discussed in the present article. The effect of nanostructurization on the hydrogen sorption/desorption characteristics of intermetallics and/or their hydrides is also discussed.  相似文献   

10.
Materials engineering plays a key role in the field of energy storage. In particular, engineering materials at the nanoscale offers unique properties resulting in high performance electrodes and electrolytes in various energy storage devices. Consequently, considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using these advanced materials. Various multi‐functional hybrid nanostructured materials are currently being studied to improve energy and power densities of next generation storage devices. This review describes some of the recent progress in the synthesis of different types of hybrid nanostructures using template assisted and non‐template based methods. The potential applications and recent research efforts to utilize these hybrid nanostructures to enhance the electrochemical energy storage properties of Li‐ion battery and supercapacitor are discussed. This review also briefly outlines some of the recent progress and new approaches being explored in the techniques of fabrication of 3D battery structures using hybrid nanoarchitectures.  相似文献   

11.
The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.  相似文献   

12.
NaAlH4空间约束体系的构建及其脱/加氢行为   总被引:1,自引:0,他引:1  
配位氢化物具有较高的质量储氢密度,已成为国内外储氢材料的研究热点,但尚未解决的脱/加氢温度过高、速率慢和可逆性差等问题是制约其实际应用的主要原因.利用孔性材料的结构特点来构建纳米尺度的空间约束体系,可有效地改善配位氢化物的脱/加氢性能.以NaAlH4为例,介绍了孔性材料的制备和表面修饰,分析了配位氢化物/孔性介质空间约束体系的构建及其且兑/加氢行为.这种空间约束体系为改善配位氢化物的储氢性能提供了一条新途径.进一步构建配位氢化物/孔性介质/催化剂的空间约束体系,实现对配位氢化物的复合催化,将是今后努力的方向.  相似文献   

13.
Tubular and fibrous nanostructures of titanates have recently been synthesized and characterized. Three general approaches (template assisted, anodic oxidation, and alkaline hydrothermal) for the preparation of nanostructured titanate and TiO2 are reviewed. The crystal structures, morphologies, and mechanism of formation of nanostructured titanates produced by the alkaline hydrothermal method are critically discussed. The physicochemical properties of nanostructured titanates are highlighted and the links between properties and applications are emphasized. Examples of early applications of nanostructured titanates in catalysis, photocatalysis, electrocatalysis, lithium batteries, hydrogen storage, and solar‐cell technologies are reviewed. The stability of titanate nanotubes at elevated temperatures and in acid media is considered.  相似文献   

14.
Alanates, borohydrides, and amides are complex hydrides with high concentration hydrogen that have been actively investigated for materials‐based hydrogen storage on‐board polymer electrolyte membrane fuel cell (PEMFC) vehicle applications. The major challenge is to release hydrogen at fuel cell working temperature range at fast enough rate without simultaneous desorption of fuel cell poisoning impurities. We review recent progress in hydrogen reaction mechanism and schemes for complex hydride hydrogen storage.  相似文献   

15.
The rapidly expanding toolbox for design and preparation is a major driving force for the advances in nanomaterials science and technology. Melt infiltration originates from the field of ceramic nanomaterials and is based on the infiltration of porous matrices with the melt of an active phase or precursor. In recent years, it has become a technique for the preparation of advanced materials: nanocomposites, pore‐confined nanoparticles, ordered mesoporous and nanostructured materials. Although certain restrictions apply, mostly related to the melting behavior of the infiltrate and its interaction with the matrix, this review illustrates that it is applicable to a wide range of materials, including metals, polymers, ceramics, and metal hydrides and oxides. Melt infiltration provides an alternative to classical gas‐phase and solution‐based preparation methods, facilitating in several cases extended control over the nanostructure of the materials. This review starts with a concise discussion on the physical and chemical principles for melt infiltration, and the practical aspects. In the second part of this contribution, specific examples are discussed of nanostructured functional materials with applications in energy storage and conversion, catalysis, and as optical and structural materials and emerging materials with interesting new physical and chemical properties. Melt infiltration is a useful preparation route for material scientists from different fields, and we hope this review may inspire the search and discovery of novel nanostructured materials.  相似文献   

16.
The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydrogen storage focuses on metal hydrides, these materials are currently limited by slow kinetics and energy inefficiency. Nanostructured materials with high surface areas are actively being developed as another option. These materials avoid some of the kinetic and thermodynamic drawbacks of metal hydrides and other reactive methods of storing hydrogen. In this work, progress towards hydrogen storage with nanoporous materials in general and porous organic polymers in particular is critically reviewed. Mechanisms of formation for crosslinked polymers, hypercrosslinked polymers, polymers of intrinsic microporosity, and covalent organic frameworks are discussed. Strategies for controlling hydrogen storage capacity and adsorption enthalpy via manipulation of surface area, pore size, and pore volume are discussed in detail.

  相似文献   


17.
AMH4型金属络合物贮氢材料(NaAlH4)的研究进展   总被引:2,自引:0,他引:2  
唐朝辉  罗永春  阎汝煦  康龙 《材料导报》2005,19(10):113-116
AMH4型(A=Li、Na、K;M=B、Al、Ga)金属络合物贮氢材料由于具备高的氢质量百分比,被认为是最具开发潜力的贮氢材料之一,重点阐述了NaAlH4的合成方法、添加催化剂的影响、吸放氢动力学性能分析的研究现状,并分析了NaAlH4材料的发展与应用中需解决的问题.  相似文献   

18.
The search for a universal memory storage device that combines rapid read and write speeds, high storage density and non-volatility is driving the exploration of new materials in nanostructured form. Phase-change materials, which can be reversibly switched between amorphous and crystalline states, are promising in this respect, but top-down processing of these materials into nanostructures often damages their useful properties. Self-assembled nanowire-based phase-change material memory devices offer an attractive solution owing to their sub-lithographic sizes and unique geometry, coupled with the facile etch-free processes with which they can be fabricated. Here, we explore the effects of nanoscaling on the memory-storage capability of self-assembled Ge2Sb2Te5 nanowires, an important phase-change material. Our measurements of write-current amplitude, switching speed, endurance and data retention time in these devices show that such nanowires are promising building blocks for non-volatile scalable memory and may represent the ultimate size limit in exploring current-induced phase transition in nanoscale systems.  相似文献   

19.
Graphene has become a worldwide admired material among researchers and scientists equally due to its unique richness in mechanical strength,electrical conductivity,optical and thermal properties.Researchers have explored that the composite materials based on graphene and metal/metal oxide nanostructures possess excellent potential for energy storage technologies.In particular,supercapacitors based on such composite materials have engrossed the extreme interest of researchers for its rapid charging/discharging time,safe operation and longer cyclic constancy.Till now,several fabrication techniques for composite materials and their energy storage applications have been explored.Here,specially,we have concentrated on the hottest research progress for the fabrication of graphene oxide and metal/metal oxide nanocomposites.We also emphasized on the characteristics and properties of supercapacitors fabricated using these composite materials.Moreover,our study is focused on the specific capacitance and cyclic stability of various composites to haul out the most efficient material for supercapacitor applications.  相似文献   

20.
2D materials have received tremendous scientific and engineering interests due to their remarkable properties and broad‐ranging applications such as energy storage and conversion, catalysis, biomedicine, electronics, and so forth. To further enhance their performance and endow them with new functions, 2D materials are proposed to hybridize with other nanostructured building blocks, resulting in hybrid nanostructures with various morphologies and structures. The properties and functions of these hybrid nanostructures depend strongly on the interfacial interactions between 2D materials and other building blocks. Covalent and coordination bonds are two strong interactions that hold high potential in constructing these robust hybrid nanostructures based on 2D materials. However, most 2D materials are chemically inert, posing problems for the covalent assembly with other building blocks. There are usually coordination atoms in most of 2D materials and their derivatives, thus coordination interaction as a strong interfacial interaction has attracted much attention. In this review, recent progress on the coordination‐driven hierarchical assembly based on 2D materials is summarized, focusing on the synthesis approaches, various architectures, and structure–property relationship. Furthermore, insights into the present challenges and future research directions are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号