首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了"塑性钝化模型"和"裂纹闭合效应"与实际观察结果存在的矛盾。最后,对钛合金疲劳裂纹扩展研究的内容和研究结果进行了概述。  相似文献   

4.
Ti-1023钛合金的疲劳裂纹扩展行为   总被引:1,自引:1,他引:1  
研究了Ti-1023合金轮盘轮缘的疲劳裂纹扩展规律,分析了取样方向和应力比对疲劳裂纹扩展速率的影响.结果表明,在相同的应力场强度因子范嗣下,随应力比的增大,裂纹扩展速率也随之增大;而取样方向对疲劳裂纹扩展速率的影响不大;验证了全范嗣疲劳扩展公式,为进一步寿命估算提供了依据.  相似文献   

5.
温度对TC4-DT损伤容限型钛合金疲劳裂纹扩展行为的影响   总被引:7,自引:0,他引:7  
对TC4-DT损伤容限型钛合金在150℃,25℃下的疲劳裂纹扩展速率da/dN进行了测试,给出了扩展速率和应力强度因子幅值AK之间的关系曲线。用SEM对2种温度下断口形貌进行了观测,实验结果表明,150℃的疲劳裂纹扩展速率试样具有较低的疲劳裂纹扩展速率,25℃的疲劳裂纹扩展速率试样具有较低的门槛值;稳态扩展区解理断裂和条带循环机制共存,150℃的da/dN试样中的疲劳辉间距比25℃试样细;快速扩展区的断口形貌呈韧窝型静载断裂特征,150℃的da/dN试样中的韧窝比25℃试样深。  相似文献   

6.
Ti8LC低成本钛合金疲劳裂纹扩展行为研究   总被引:2,自引:0,他引:2  
采用双重退火对Ti8LC低成本钛合金进行热处理,测试其拉伸性能,并对其疲劳裂纹扩展行为进行研究,探索其疲劳断裂机制.结果表明,提高双重退火的第1次退火温度,强度略有升高,塑性降低.da/dN试样断口3个区特征明显:预裂区为解理断裂机制.稳态扩展区裂纹以条纹循环机制向前扩展,同时能观察到很多二次裂纹.快速扩展区的断口呈韧窝型断裂特征.该合金的疲劳裂纹扩展速率对退火温度不敏感.  相似文献   

7.
TA15钛合金焊缝及热影响区疲劳裂纹扩展行为   总被引:1,自引:5,他引:1  
在扫描电镜下对TA15钛合金氩弧焊焊缝(FZ)及热影响区(HAZ)疲劳裂纹扩展行为进行了动态原位观察研究.结果表明,焊缝疲劳裂纹扩展过程中裂纹尖端滑移明显,滑移线较长;热影响区裂纹扩展初期裂纹尖端滑移不明显,在裂纹扩展中后期才出现较为明显的滑移,且滑移线较短,存在较多的二次裂纹;焊缝疲劳裂纹扩展速率高于热影响区.焊缝与热影响区疲劳裂纹扩展行为的差异与其显微组织的不同有关.  相似文献   

8.
作为人体防弹(如防弹衣)材料,其要求是十分严格的,它要保障人身的绝对安全,又要减轻穿戴人员的负重,并且对人体无危害等.众所周知,在高速弹丸的攻击下,防弹板材料需要承受住复杂应变及应变率的作用,材料在动载下的冲击性能与其静态力学性能是完全不同的两种机制,因此抗弹材料的研制始终是一大难题.  相似文献   

9.
本文研究了近β-Ti合金、近α-Ti合金和(α+β)-Ti合金在0~-110℃、频率为200 Hz简谐振动过程中的振动模量及裂纹扩展行为,分析了温度对简谐振动中裂纹扩展速率及位错分布的影响,揭示了裂纹扩展机制。结果表明:低温下的简谐振动会加剧位错堆积与缠绕,从而增大阻尼,降低钛合金的振动回弹能力,提升钛合金的减振性能。其中,近β-Ti合金的储能模量整体比近α-Ti合金的低28.97%,其损耗模量和阻尼分别比(α+β)-Ti合金的高16.4%和9.88%,其低温下的减振性能优于其他两种钛合金。简谐振动在β相内产生的位错在相界累积并向相内滑移,导致应力集中和界面处微裂纹的产生,进而发生穿晶断裂。此外,伴随着β相中二次裂纹的产生,裂纹尖端受到不同方向的阻力,消耗了额外的简谐振动能量,尤其是当温度低于-60℃时,次生裂纹有效延缓了裂纹扩展速率。简谐振动在α相内产生的位错首先在相内被激活并不断向相界堆积,导致相内能量高于相界,裂纹发生沿晶扩展。在-60~-110℃温度区间,更低的损耗模量和阻尼使简谐振动能量作用在裂纹沿晶扩展上,增大了α相裂纹扩展速率。  相似文献   

10.
加载频率对中温环境下疲劳裂纹扩展的影响   总被引:1,自引:0,他引:1  
由于材料或环境的因素,加载频率对疲劳裂纹扩展速率将产生很大的影响,以工业Ti为对象,研究了中等温度环境下疲劳裂纹扩展性能及加载频率的影响,并用弹、粘塑性理论对其进行了理论上的探讨,基于该理论导出的本构关系和利用有限元方法,对裂纹尖端的应力应变进行了分析,结果表明,粘塑性应变范围和J积分范围可作为裂纹扩展的控制参数,能很好地反映加载频率对裂纹扩展的影响。  相似文献   

11.
12.
对TC4-DT钛合金在不同应力比下的疲劳裂纹扩展行为进行了研究,绘制出疲劳裂纹扩展速率和应力强度因子幅值ΔK之间的关系曲线,用SEM对断口形貌进行了观测。实验结果表明,随着应力比增加,裂纹扩展速率增加;应力比降低,da/dN曲线向高ΔK方向移动。预裂区主要是以微区解理断裂机制为主,稳态扩展区主要是以疲劳条带扩展机制为主,同时也存在微区解理断裂机制,快速扩展区的断口形貌呈韧窝型静载断裂特征。  相似文献   

13.
对Ti700钛合金在不同热处理制度下的冲击韧性进行了研究.结果表明,Ti700钛合金冲击韧性随退火温度升高而发生明显变化,650~850℃处理后试样的冲击韧度为低值区,915℃处理可获得最高值.相变点以下热处理试样的冲击断口为韧性断裂,相变点以上热处理的为准解理的脆性断裂.915℃试样热处理的初生α相体积分数为12%,随着退火温度的降低,初生α相体积分数升高,尺寸增大,Al元素富集于α相中.初生α相界有利于微裂纹的形核,随着初生α相体积分数减少,避免了在初生α相界处孔洞萌生,可有效改进材料的冲击韧性.  相似文献   

14.
TA15钛合金疲劳裂纹扩展与显微组织的关系   总被引:2,自引:0,他引:2  
对TA15钛合金的疲劳裂纹扩展速率及其影响因素进行了研究.结果表明,在β区锻造的模锻件,其低倍组织为清晰可见的β晶粒,属于较粗大的网篮组织.在α β区锻造的模锻件,其组织为双态组织.β区锻件的塑性偏低,但其da/dN疲劳裂纹扩展速率明显比α β区锻件的慢.β区锻件的da/dN疲劳裂纹的断口形貌中,包括裂纹扩展的初期、中间阶段和末尾断裂阶段,都明显存在二次裂纹和解理脆性特征.  相似文献   

15.
长途货运工具的结构轻量化是降低油耗的需要,轻量化的潜在材料包括Al-Li、高强度亚稳β钛合金等。由于亚稳β钛合金在常温下有韧性断裂倾向,其在关键结构件中的应用受到限制。将导致亚稳β钛合金晶界韧性断裂的因素量化,进而降低其使用时的失效风险是十分必要的。目前,对亚稳β钛合金的晶界韧性断裂问题已进行了定性研究,  相似文献   

16.
17.
采用扫描电镜原位拉伸观察了电解低钛A356合金铸态下裂纹萌生与扩展特征。结果表明:铸态A356合金裂纹优先萌生于二次枝晶臂间薄弱的共晶体区、大块的共晶硅相处;裂纹的扩展主要是微裂纹易沿着共晶体与基体界面扩展,合金组织中的共晶硅相对裂纹的扩展有一定的阻碍作用,当裂纹与共晶硅颗粒相遇时,扩展方向发生偏离而转向裂纹尖端前沿处有共晶体区开裂、共晶硅相发生断裂、或与基体界面发生分离的更薄弱区。  相似文献   

18.
钛合金焊缝表面疲劳短裂纹的扩展行为   总被引:1,自引:0,他引:1  
对TC2钛合金焊缝金属疲劳表面短裂纹扩展行为进行了实验研究,表明裂纹的扩展过程是多裂纹系统的演化过程.基于实验结果,考虑到短裂纹扩展过程中的合并、干涉作用等因素,用应力松弛区模糊化的方法,建立了仿真模型,对疲劳短裂纹演化的物理过程进行了数值模拟.将短裂纹演化行为模拟结果与短裂纹扩展复型的实验结果比较,可以看出两者吻合较好,表明所建立的准则合理、实用.  相似文献   

19.
钛合金高温变形过程往往伴随微裂纹的产生与扩展,且其与微观组织形态密切相关,显著影响了钛合金的成形质量和成形极限。为此,利用金相照片建立了基于TA15钛合金真实组织的二维多晶体微观有限元模型,采用微裂纹扩展时间,定量研究了不同组织形态的TA15钛合金等温拉伸过程中的沿晶微裂纹形成与扩展规律。结果表明:微裂纹优先形成于三角或四角晶界处,更容易沿α-β相界扩展;等轴组织随着α相体积分数升高,微裂纹更易产生和扩展;网篮组织与魏氏组织中微裂纹易于沿与加载轴垂直取向的片层α相界面扩展,魏氏组织晶界α相为微裂纹扩展提供了路径;三态组织中微裂纹易于沿片层α相界面扩展,但是等轴α相与片层α相的交织使界面形貌复杂,阻碍微裂纹扩展。相同加载条件下,微裂纹扩展的难易顺序为:三态组织、网篮组织、魏氏组织、等轴组织。  相似文献   

20.
由于β钛合金具有优越的性能,诸如:极好的比强度、可焊接性、耐腐蚀性和冷成形性,使得人们把大量的注意力都集中于卢钛合金的开发与应用方面.然而对β钛合金的机械性能──尤其是疲劳性能的研究却非常有限.最近,有人研究了卢Ti-15Mo-SZr-3用合金经不同温度的固溶处理后微观组织对疲劳行为的影响.结果显示,经低于p转变温度固港处理的材料具有极好的疲劳强度,这主要是由于该微观组织具有较高的抗裂纹发生能力.但是,在实际的工程应用中,疲劳裂纹的扩展(FaforCradPr0PagahoaFCP)成为关田间任.为此,日本区革大学的Kriro…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号