首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Nature has developed high‐performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next‐generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three‐dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D‐printing technologies are discussed. Future opportunities for the development of biomimetic 3D‐printing technology to fabricate next‐generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined.  相似文献   

2.
    
In this article, we propose a bioinspired programmed 4D printing method. A combination of magnetic orientation process and grayscale 3D printing is used to achieve site-specific orientation of the reinforcing fibers and gradient crosslinking of the matrix resin in the thickness direction within 2D composite films. After solventization and desolventization, 2D thin film structures can be transformed into complex 3D architectures, and the transformed 3D architectures can be permanently preserved without stimulation sources. Thus, the method can also be considered as an efficient 3D printing process. Then, the influences of crosslinking density, sample geometry, formulation, and fiber architecture on the deformation of the printed objects are investigated. Finally, as a proof of concept, various samples, including a hand, snowflake, and leaf, are printed to verify the feasibility of the proposed 4D printing strategy. This programmed 4D printing method provides a simple and effective reversible strategy, taking the full advantages of 4D printing and expanding the design space of 4D printing.  相似文献   

3.
    
Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.  相似文献   

4.
    
Facile preparation of architectures with precise control of shape deformations are crucial challenges due to the complicated process technique and harsh demands of the active materials. To address, the emerging 3D printing is employed to one‐step build programmable hydrogel architectures composed of only one type of material to perform various complex 3D shape deformations. The basic principle is that the secondary microstructures are introduced in the side of hydrogel strips and result in the bending or twisting deformations due to the asymmetrical swelling. With the merits of freeform design and fabrication, various hydrogel architectures including strips, sheets, and 3D objects are built with stereolithography‐based 3D printing, which realize the complex and controllable shape deformations via the programed microstructures on feature surfaces, such as bending, twisting, and even mimicking plant cirrus or petals. Most importantly, various responsive hydrogels are compatible to the approach, which can thus achieve stimuli‐reversible shape deformations. As proof‐of‐concept, a thermal‐responsive hydrogel gripper is readily realized to perform transportation by thermal‐induced grasping and releasing items. The facile 3D printing approach yet versatile in various hydrogels makes it broad opportunities for soft robotics, tissue engineering, actuators, and other devices where programmable shape deformations are required.  相似文献   

5.
6.
Hierarchical self-morphing refers to the concurrent global and local changes in shape or structure. Previous research works have demonstrated 3D printed self-morphing structures and the sequential folding/unfolding behaviours. However, the shape change events occurred mainly at the global level in a water environment either through absorbing moisture or through heating. Concurrent global and local shape changes in an ambient environment have not been reported. In this paper, we report a hierarchically blooming flower that blossoms in an ambient environment. Our design considers the strain limit through understanding the effect of thickness on the local strain to avoid fracture and the appropriate allocation of multiple materials to achieve predefined global and local shape changes. This design approach of hierarchical 4D printing may be useful for a variety of applications that involve controlled self-morphing structures with complex geometries.  相似文献   

7.
    
Multistage shape changing is essential for soft robots and actuators, which is difficult to achieve via current 4D printing methods. While 4D printing smart materials and structures are widely investigated, the effect of 3D printing parameters on 4D behaviors, on the other hand, is not adequately explored thus far. Here, it is proposed to program multistage shape memory and variable recovery force by designing 4D printing parameters. Specifically, the effects of nozzle temperature, layer thickness, geometric thickness, and filling angle on shape memory properties of polylactic acid are investigated. It is found that the nozzle temperature apparently affects shape recovery time, and the filling angle apparently affects shape recovery force. Further, the geometric thickness of specimens simultaneously affects recovery time and force. Based on the relationship between shape memory properties and process parameters, the programming of shape recovery speed and recovery force is achieved successfully. As a proof‐of‐concept, an order of the shape recovery of artificial fingers and a lifting box that can use shape recovery force to lift different weights are demonstrated. This strategy fully takes the advantages of 4D printing technology and enriches the approach to the control of 4D printing actuators and soft robots.  相似文献   

8.
目的 探究不同切口及不同打印角度形状记忆剪纸结构的拉伸力学性能及形状记忆恢复性能,获得具有较好变形能力和形状记忆恢复能力的智能化剪纸结构。方法 使用FDM打印不同角度的剪纸结构样件,并利用激光切割机获得具有方形切口和圆形切口的样件。对打印角度为0°/90°、±45°的方形切口和圆形切口样件进行常温拉伸实验。为探究温度的影响,进行高温缓慢拉伸实验和高温快速拉伸实验;对比方形切口件和圆形切口件在不同初始应变下的形状记忆恢复能力。结果 在常温下,打印角度为0°/90°的方形切口样件的拉伸距离为1.75 mm,圆形切口样件的拉伸距离为2.50 mm;±45°打印角度的方形切口样件的拉伸距离为3.25 mm,圆形切口样件的拉伸距离为3.00 mm。在高温下,材料进入高弹态,2种切口样件在200%拉伸应变下均未断裂;提高拉伸速率后,方形切口样件的拉伸应变为243.8%,圆形切口样件的拉伸应变为337.5%。结论 将打印角度从0°/90°改为±45°后,方形切口和圆形切口剪纸结构的变形能力均增强。相比于方形切口,圆形切口剪纸结构具有更好的变形能力。高温下剪纸结构的变形能力大大增强;圆形切口剪纸结构样件的形状记忆恢复能力强于方形切口样件的。  相似文献   

9.
    
Architected materials with nano/microscale orders can provide superior mechanical properties; however, reproducing such levels of ordering in complex structures has remained challenging. Inspired by Bouligand structures in nature, here, 3D printing of complex geometries with guided long-order radially twisted chiral hierarchy, using cellulose nanocrystals (CNC)-based inks is presented. Detailed rheological measurements, in situ flow analysis, polarized optical microscopy (POM), and director field analysis are employed to evaluate the chiral assembly over the printing process. It is demonstrated that shear flow forces inside the 3D printer's nozzle orient individual CNC particles forming a pseudo-nematic phase that relaxes to uniformly aligned concentric chiral nematic structures after the flow cessation. Acrylamide, a photo-curable monomer, is incorporated to arrest the concentric chiral arrangements within the printed filaments. The time series POM snapshots show that adding the photo-curable monomer at the optimized concentrations does not interfere with chiral self-assemblies and instead increases the chiral relaxation rate. Due to the liquid-like nature of the as-printed inks, optimized Carbopol microgels are used to support printed filaments before photo-polymerization. By paving the path towards developing bio-inspired materials with nanoscale hierarchies in larger-scale printed constructs, this biomimetic approach expands 3D printing materials beyond what has been realized so far.  相似文献   

10.
    
The present study focuses on fabrication and characterization of polylactic acid wood composite fabricated using fused filament fabrication 4D printing technology. The major tests performed to investigate the effect of nanosilica and nanoalumina included shape recovery rate, hardness, compressive strength, dynamic mechanical properties and Thermo-gravimetric analysis. The result of mechanical test indicated that the addition of 2 wt.% nanoalumina improved the hardness, compressive strength and flexural strength by 40 %, 25 % and 3.3 % respectively. On the other hand, the addition of 2 wt.% nanosilica improved the hardness, compressive strength and flexural strength by 60 %, 55 % and 10 % respectively. Further, the addition of nanosilica and nanoalumina improved the thermal stability and decreased the maximum shape recovery rate of wood polylactic acid composite. Nanosilica reinforced wood polylactic acid composite indicated a better choice as compared to nanoalumina reinforced wood polylactic acid composite in terms of mechanical properties, thermal properties and maximum shape recovery rate.  相似文献   

11.
    
Because of its light weight and high strength, bamboo is used in many applications around the world. Natural bamboo is built from fiber-reinforced material and exhibits a porous graded architecture that provides its remarkable mechanical performance. This porosity gradient is generated through the unique distribution of densified vascular bundles. Scientists and engineers have been trying to mimic this architecture for a very long time with much of the work focusing on the effect of fiber reinforcement. However, there still lacks quantitative studies on the role of pore gradient design on mechanical properties, in part because the fabrication of bamboo-inspired graded materials is challenging. Here, the steep and continuous porosity gradient through an ingenious cellular design in Moso bamboo is revealed. The effect of gradient design on the mechanical performance is systematically studied by using 3D-printed models. The results show that not only the magnitude of gradient but also its continuity have a significant effect. By introducing a continuous and large gradient, the maximum flexural load and energy absorption capability can be increased by 40% and 110% when comparing to the structure without gradient. These bamboo-inspired cellular architectures can offer efficient solutions for the design of damage tolerant engineering structures.  相似文献   

12.
    
Hydrogel actuators with soft‐robotic functions and biomimetic advanced materials with facile and programmable fabrication processes remain scarce. A novel approach to fabricating a shape‐memory‐hydrogel‐(SMG)‐based bilayer system using 3D printing to yield a soft actuator responsive to the methodical application of swelling and heat is introduced. Each layer of the bilayer is composed of poly(N,N‐dimethyl acrylamide‐co‐stearyl acrylate) (P(DMAAm‐co‐SA))‐based hydrogels with different concentrations of the crystalline monomer SA within the SMG network and which exhibit distinctive physicochemical properties that enable anisotropic swelling‐induced actuation of the bilayer with reversible shape‐memory properties. The deformation, reversibility, and response time of the bilayer actuator are extensively dependent on temperature. Utilizing the proposed SMG bilayer actuator model with its synergistic functions, a nature‐inspired flower architecture that changes its shape upon immersion in water and an underwater 3D macroscopic soft gripper that can grab, transport, and release a guest substance are developed to demonstrate the applicability of these hydrogels in biomimetic actuators, encapsulating systems, and soft robotics.  相似文献   

13.
    
3D printing of graphene electrodes with high mechanical strength has been a growing interest in the development of advanced energy, environment, and electronic systems, yet is extremely challenging. Herein, a 3D printed bioinspired electrode of graphene reinforced with 1D carbon nanotubes (CNTs) (3DP GC) with both high flexural strength and hierarchical porous structure is reported via a 3D printing strategy. Mechanics modeling reveals the critical role of the 1D CNTs in the enhanced flexural strength by increasing the friction and adhesion between the 2D graphene nanosheets. The 3DP GC electrodes hold distinct advantages: i) an intrinsically high flexural strength that enables their large-scale applications; and ii) a hierarchical porous structure that offers large surface area and interconnected channels, endowing fast mass and/or charge and ions transport rate, which is thus beneficial for acting as an ideal catalyst carrier. The 3DP GC electrode integrated with a NiFeP nanosheets array exhibits a voltage of 1.58 V at 30 mA cm−2 as bifunctional electrode for water splitting, which is much better than most of the reported Ni-, Co-, and Fe-based bifunctional electrocatalysts. Importantly, this study paves the way for the practical applications of 3D printed graphene electrodes in many energy conversion/storage, environmental, and electronic systems where high flexural strength is preferred.  相似文献   

14.
    
Micro/nano-scaled mechanical metamaterials have attracted extensive attention in various fields attributed to their superior properties benefiting from their rationally designed micro/nano-structures. As one of the most advanced technologies in the 21st century, additive manufacturing (3D printing) opens an easier and faster path for fabricating micro/nano-scaled mechanical metamaterials with complex structures. Here, the size effect of metamaterials at micro/nano scales is introduced first. Then, the additive manufacturing technologies to fabricate mechanical metamaterials at micro/nano scales are introduced. The latest research progress on micro/nano-scaled mechanical metamaterials is also reviewed according to the type of materials. In addition, the structural and functional applications of micro/nano-scaled mechanical metamaterials are further summarized. Finally, the challenges, including advanced 3D printing technologies, novel material development, and innovative structural design, for micro/nano-scaled mechanical metamaterials are discussed, and future perspectives are provided. The review aims to provide insight into the research and development of 3D-printed micro/nano-scaled mechanical metamaterials.  相似文献   

15.
ABSTRACT

Additive manufacturing (AM), commonly known as three-dimensional (3D) printing or rapid prototyping, has been introduced since the late 1980s. Although a considerable amount of progress has been made in this field, there is still a lot of research work to be done in order to overcome the various challenges remained. Recently, one of the actively researched areas lies in the additive manufacturing of smart materials and structures. Smart materials are those materials that have the ability to change their shape or properties under the influence of external stimuli. With the introduction of smart materials, the AM-fabricated components are able to alter their shape or properties over time (the 4th dimension) as a response to the applied external stimuli. Hence, this gives rise to a new term called ‘4D printing’ to include the structural reconfiguration over time. In this paper, recent major progresses in 4D printing are reviewed, including 3D printing of enhanced smart nanocomposites, shape memory alloys, shape memory polymers, actuators for soft robotics, self-evolving structures, anti-counterfeiting system, active origami and controlled sequential folding, and some results from our ongoing research. In addition, some research activities on 4D bio-printing are included, followed by discussions on the challenges, applications, research directions and future trends of 4D printing.  相似文献   

16.
    
The development of 3D soft‐robotic components is currently hindered by material limitations associated with conventional 3D printing techniques. To overcome this challenge, an indirect 3D printing approach based on the fabrication of 3D printed sacrificial templates is proposed. High‐resolution micromolds produced by direct laser writing are infused with polymers and then dissolved, leading to the final 3D printed soft microstructures. This method is used to indirectly print 3D and 4D soft microrobots. The versatility of this technique is shown through the fabrication and actuation of gelatin helices filled with magnetic nanoparticles. In addition, it is shown that stent‐like microstructures with shape memory properties can be manufactured with minimum features of 5 µm, which is 40 times smaller than those reported to date. In summary, the utilization of this technique can overcome obstacles associated with the fabrication of soft microrobots and surgical tools for minimally invasive surgery.  相似文献   

17.
18.
    
Minimizing damage during the insertion of stents or other medical devices is critical for rapid and successful recovery. Since the delivery passages are often narrower than the size of the delivered object, a high deformability of the implanted devices is paramount to achieve a smooth insertion into the target tissue. In this study, a novel design of 3D-printable and highly deformable structures inspired by Nanjing Tamasudare is proposed. These structures rapidly change dimensionality from flat to linear, elongated shapes. A series of single units that each comprises two interconnected rods and attaching loops are directly 3D-printed without classical assembly or fabrication. Multiple units are connected together but remain individually movable and deformable. The smooth changes of the unit assembly, including shifting, bending, and inclination, allow to transform the structure from an initially condensed state to various types of target shapes. To verify the transformation capabilities, smooth insertion of the 3D-printed structure in a mock-up vessel through a small opening in an elongated state is demonstrated. After insertion, the units are reassembled to a stent-like structure within the vessel. The authors believe that this 3D-printable and highly transformable design is widely applicable for insertion operations of implantable devices or electronics.  相似文献   

19.
    
Fiber-filled composite materials offer a unique pathway to enable new functionalities for systems built via extrusion-based additive manufacturing (or “3D printing”); however, challenges remain in controlling the fiber orientations that govern ultimate performance. In this work, a multi-material, shape-changing nozzle—constructed by means of PolyJet 3D printing—is presented that allows for the spatial distribution of short fibers embedded in polymer matrices to be modulated on demand throughout extrusion-based deposition processes. Specifically, the nozzle comprises flexible bladders that can be inflated pneumatically to alter the geometry of the material extrusion channel from a straight to a converging–diverging configuration, and in turn, the directional orientation of fibers within printed filaments. Experimental results for printing carbon microfiber-hydrogel composites reveal that increasing the nozzle actuation pressure from 0 to 100 kPa reduced the proportion of aligned fibers, and notably, prompted a transition from anisotropic to isotropic water-induced swelling properties (i.e., the ratio of transverse to longitudinal swelling strain decreased from 1.73  ±  0.37 to 0.93  ±  0.39, respectively). In addition, dynamically varying the nozzle geometry during the extrusion of continuous composite filaments effects distinct swelling behaviors in adjacent regions, suggesting potential utility of the presented approach for emerging “4D printing” applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号