首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene‐based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals.  相似文献   

2.
Soft–hard tissue interfaces in nature present a diversity of hierarchical transitions in composition and structure to address the challenge of stress concentrations that would otherwise arise at their interface. The translation of these into engineered materials holds promise for improved function of biomedical interfaces. Here, soft–hard tissue interfaces found in the body in health and disease, and the application of the diverse, functionally graded, and hierarchical structures that they present to bioinspired engineering materials are reviewed. A range of such bioinspired engineering materials and associated manufacturing technologies that are on the horizon in interfacial tissue engineering, hydrogel bioadhesion at the interfaces, and healthcare and medical devices are described.  相似文献   

3.
Technologies capable of establishing intimate, long‐lived optical/electrical interfaces to neural systems will play critical roles in neuroscience research and in the development of nonpharmacological treatments for neurological disorders. The development of high‐density interfaces to 3D populations of neurons across entire tissue systems in living animals, including human subjects, represents a grand challenge for the field, where advanced biocompatible materials and engineered structures for electrodes and light emitters will be essential. This review summarizes recent progress in these directions, with an emphasis on the most promising demonstrated concepts, materials, devices, and systems. The article begins with an overview of electrode materials with enhanced electrical and/or mechanical performance, in forms ranging from planar films, to micro/nanostructured surfaces, to 3D porous frameworks and soft composites. Subsequent sections highlight integration with active materials and components for multiplexed addressing, local amplification, wireless data transmission, and power harvesting, with multimodal operation in soft, shape‐conformal systems. These advances establish the foundations for scalable architectures in optical/electrical neural interfaces of the future, where a blurring of the lines between biotic and abiotic systems will catalyze profound progress in neuroscience research and in human health/well‐being.  相似文献   

4.
This review focuses on the application of nanomaterials for neural interfacing. The junction between nanotechnology and neural tissues can be particularly worthy of scientific attention for several reasons: (i) Neural cells are electroactive, and the electronic properties of nanostructures can be tailored to match the charge transport requirements of electrical cellular interfacing. (ii) The unique mechanical and chemical properties of nanomaterials are critical for integration with neural tissue as long‐term implants. (iii) Solutions to many critical problems in neural biology/medicine are limited by the availability of specialized materials. (iv) Neuronal stimulation is needed for a variety of common and severe health problems. This confluence of need, accumulated expertise, and potential impact on the well‐being of people suggests the potential of nanomaterials to revolutionize the field of neural interfacing. In this review, we begin with foundational topics, such as the current status of neural electrode (NE) technology, the key challenges facing the practical utilization of NEs, and the potential advantages of nanostructures as components of chronic implants. After that the detailed account of toxicology and biocompatibility of nanomaterials in respect to neural tissues is given. Next, we cover a variety of specific applications of nanoengineered devices, including drug delivery, imaging, topographic patterning, electrode design, nanoscale transistors for high‐resolution neural interfacing, and photoactivated interfaces. We also critically evaluate the specific properties of particular nanomaterials—including nanoparticles, nanowires, and carbon nanotubes—that can be taken advantage of in neuroprosthetic devices. The most promising future areas of research and practical device engineering are discussed as a conclusion to the review.  相似文献   

5.
Neurotechnology     
Microengineering techniques are being used to address the problems associated with producing an intimate interface between the nervous system and microelectronic devices. As a result of the growing availability of micromachining technology, research into neurotechnology has grown relatively rapidly in recent years and appears to be approaching `critical mass'. This article provides an abridged introduction to this field, with an emphasis on the technology employed  相似文献   

6.
Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient, optimal bandgap, high defect tolerance factor and long carrier diffusion length. However, suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation, transportation, collection by the interfaces and band alignment. Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces, this review addresses the properties of hole transport materials, relevant working mechanisms, and the interface engineering of perovskite solar cell (PSC) device architecture, which also provides significant insights to design and development of PSC devices with high efficiency.  相似文献   

7.
Interfaces are often crucial determinants of the physicochemical properties of a material. As a result, the rational production and engineering of heterogeneities, and the resulting interfaces, can enhance the functionality of a material system. This is especially true of two dimensional (2D) materials, which are only a few atoms thick and thus sensitive to small perturbations of their surroundings. As a result, 2D materials and their heterostructures have been recently modified to function as catalysts, photodetectors, chemical sensors, memory, logic devices, single photon emitters, and more. In this review, we summarize the current understanding of functional interfaces in few-layered chalcogenide 2D systems, and address the following topics: The classification of interfaces by dimensionality and electronic structure, methods of creating 2D interfaces, characterization techniques and related challenges, applications of interfacial engineering in 2D systems, and finally a perspective on the future of this rapidly advancing field of study.  相似文献   

8.
Neural interfaces facilitating communication between the brain and machines must be compatible with the soft, curvilinear, and elastic tissues of the brain and yet yield enough power to read and write information across a wide range of brain areas through high-throughput recordings or optogenetics. Biocompatible-material engineering has facilitated the development of brain-compatible neural interfaces to support built-in modulation of neural circuits and neurological disorders. Recent developments in brain-compatible neural interfaces that use soft nanomaterials more suitable for complex neural circuit analysis and modulation are reviewed. Preclinical tests of the compatibility and specificity of these interfaces in animal models are also discussed.  相似文献   

9.
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP‐only electrodes are showing improvements in signal performance and tissue interfaces. CP‐based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real‐world applications are highlighted.  相似文献   

10.
The convergence of materials science, electronics, and biology, namely bioelectronic interfaces, leads novel and precise communication with biological tissue, particularly with the nervous system. However, the translation of lab-based innovation toward clinical use calls for further advances in materials, manufacturing and characterization paradigms, and design rules. Herein, a translational framework engineered to accelerate the deployment of microfabricated interfaces for translational research is proposed and applied to the soft neurotechnology called electronic dura mater, e-dura. Anatomy, implant function, and surgical procedure guide the system design. A high-yield, silicone-on-silicon wafer process is developed to ensure reproducible characteristics of the electrodes. A biomimetic multimodal platform that replicates surgical insertion in an anatomy-based model applies physiological movement, emulates therapeutic use of the electrodes, and enables advanced validation and rapid optimization in vitro of the implants. Functionality of scaled e-dura is confirmed in nonhuman primates, where epidural neuromodulation of the spinal cord activates selective groups of muscles in the upper limbs with unmet precision. Performance stability is controlled over 6 weeks in vivo. The synergistic steps of design, fabrication, and biomimetic in vitro validation and in vivo evaluation in translational animal models are of general applicability and answer needs in multiple bioelectronic designs and medical technologies.  相似文献   

11.
Implantable devices for recording and stimulation of the human nervous system offer promise for the treatment of disorders including spinal cord injury, stroke, traumatic brain injury, sensory and motor deficits, chronic pain, epilepsy, Parkinson’s disease and amputation. While advances in neuroengineering devices have been impressive, often the expectations and desires for a chronically implantable device remain unrealized. In the face of engineering approaches which perform well on the bench or in acute implantations is an immune response which is well-tuned to recognize foreign bodies, including the materials chosen for our innovations. Recent years have demonstrated a co-evolution of engineering solutions for neural disorders and knowledge of underlying biological hurdles. This review describes the state-of-the-art for implantable neuroengineering devices used for electrical recording and stimulation, the tissue response to these devices, and emerging technologies and materials to mitigate the tissue response. The test methods for candidate materials and paths to the commercial market are briefly described.  相似文献   

12.
We report the fabrication, at low-temperature, of solution processed graphene transistors based on carefully engineered graphene/organic dielectric interfaces. Graphene transistors based on these interfaces show improved performance and reliability when compared with traditional SiO(2) based devices. The dielectric materials investigated include Hyflon AD (Solvay), a low-k fluoropolymer, and various organic self-assembled monolayer (SAM) nanodielectrics. Both types of dielectric are solution processed and yield graphene transistors with similar operating characteristics, namely high charge carrier mobility, hysteresis free operation, negligible doping effect and improved operating stability as compared to bare SiO(2) based devices. Importantly, the use of SAM nanodielectrics enables the demonstration of low operating voltage (?相似文献   

13.
Advances in materials science and the desire for next‐generation electronics have driven the development of stretchable and transparent electronics in the past decade. Novel applications, such as smart contact lenses and wearable sensors, have been introduced with stretchable and transparent form factors, requiring a deeper and wider exploration of materials and fabrication processes. In this regard, many research efforts have been dedicated to the development of mechanically stretchable, optically transparent materials and devices. Recent advances in stretchable and transparent electronics are discussed herein, with special emphasis on the development of stretchable and transparent materials, including substrates and electrodes. Several representative examples of applications enabled by stretchable and transparent electronics are presented, including sensors, smart contact lenses, heaters, and neural interfaces. The current challenges and opportunities for each type of stretchable and transparent electronics are also discussed.  相似文献   

14.
'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.  相似文献   

15.
Molecules and atoms at material interfaces have properties that are distinct from those found in the bulk. Distinguishing the interfacial species from the bulk species is the inherent difficulty of interfacial analysis. For organic photovoltaic devices, the interface between the donor and acceptor materials is the location for exciton dissociation. Dissociation is thought to occur via a complex route effected by microstructure and the electronic energy levels. The scale of these devices and the soft nature of these materials create an additional level of difficulty for identification and analysis at these interfaces. The transmission electron microscope (TEM) and the spectroscopic techniques it incorporates can allow the properties of the donor-acceptor interfaces to be revealed. Cross-sectional sample preparation, using modern focused ion beam instruments, enables these buried interfaces to be uncovered with minimal damage for high resolution analysis. This powerful instrument combination has the ability to draw conclusions about interface morphology, structure and electronic properties of organic donor-acceptor interfaces at the molecular scale. Recent publications have demonstrated these abilities, and this article aims to summarise some of that work and provide scope for the future.  相似文献   

16.
A brief introduction of the historical background of grain boundary engineering for structural and functional polycrystalline materials is presented herewith. It has been emphasized that the accumulation of fundamental knowledge about the structure and properties of grain boundaries and interfaces has been extensively done by many researchers during the past one century. A new approach in terms of the concept of grain boundary and interface engineering is discussed for the design and development of high performance materials with desirable bulk properties. Recent advancements based on these concepts clearly demonstrate the high potential and general applicability of grain boundary engineering for various kinds of structural and functional materials. Future prospects of the grain boundary and interface engineering have been outlined, hoping that a new dimension will emerge pertaining to the discovery of new materials and the generation of a new property originating from the presence of grain boundaries and interfaces in advanced polycrystalline materials.  相似文献   

17.
研究了间隙波在功能梯度压电板和压电半空间结构中的传播性质.功能梯度压电板的材料性能沿x2方向呈指数变化,首先推导了间隙波传播时的解析解,利用界面条件得到了间隙波的频散方程,基于推导的频散方程,结合数值算例分析了功能梯度压电材料的梯度、压电层厚度以及材料性能对间隙波相速度的影响,研究结果对功能梯度压电材料的覆层结构在声波器件中的应用具有重要的参考价值.  相似文献   

18.
Soft electronic systems are emerging that are heralded to bring revolution and a frontier for the interactions between human beings and machines. Interactive interfaces enable integrated bidirectional functionalities of sensing the external stimulus and providing interactive response to the users. Human body is considerably soft and stretchable; this characteristic puts forward the need for good mechanical conformabilities for the interfacing electronic devices. As a vital and indispensable component in electronic systems, soft and deformable conductor is of great importance to establish the enabling technologies. Significant progresses have been developed with new strategies and materials being exploited to improve the performance of elastic conductors. In this article, we review the latest advances in deformable conductors and their applications to enable soft electronic devices for human–machine interfaces. We first focus on the important characteristics of the deformable conductors in their stretchability, conductivity, and transparency. Representative soft electronic systems that are categorized into “receptive devices” and “responsive devices” are then reviewed.  相似文献   

19.
Advanced materials and device engineering has played a crucial role in improving the performance of electrochemical random access memory (ECRAM) devices. ECRAM technology has been identified as a promising candidate for implementing artificial synapses in neuromorphic computing systems due to its ability to store analog values and its ease of programmability. ECRAM devices consist of an electrolyte and a channel material sandwiched between two electrodes, and the performance of these devices depends on the properties of the materials used. This review provides a comprehensive overview of material engineering strategies to optimize the electrolyte and channel materials' ionic conductivity, stability, and ionic diffusivity to improve the performance and reliability of ECRAM devices. Device engineering and scaling strategies are further discussed to enhance ECRAM performance. Last, perspectives on the current challenges and future directions in developing ECRAM-based artificial synapses in neuromorphic computing systems are provided.  相似文献   

20.
Interfaces between different materials deeply influence the mechanical performance of load-bearing structures in several engineering fields. A reliable predictive ability of this performance thus requires a sound mechanical understanding of the interfacial behavior and of its implications on macroscopic design-related quantities such as strength, stiffness and ductility. This paper focuses on three interface-related topics, with special emphasis on the civil engineering context: (i) modeling of debonding at interfaces between fiber-reinforced polymer strengthening systems, in the form of externally bonded laminates or near-surface mounted reinforcement, and the structural member to be strengthened, be it a beam or an arch; (ii) modeling of impact at interfaces between voussoirs in masonry arches under ground accelerations; (iii) novel computational methods to improve the numerical treatment of interfaces undergoing contact or debonding. The paper provides an overview of some of the author’s contributions on the aforementioned aspects, and outlines some possible directions for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号