首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

2.
A power conversion efficiency of up to 8.91% is obtained for a solution‐processed polymer tandem solar cells based on a large‐bandgap polymer, poly(4,4‐dioctyldithieno(3,2‐b:2′,3′‐d)silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl) with a polymeric interconnecting layer to electrically connect the front and rear subcells, demonstrating that proper device and interface engineering are can improve the performance of polymer tandem solar cells.  相似文献   

3.
4.
At present, one of the major factors limiting the further improvement of inverted (p-i-n) perovskite solar cells (PSCs) is trap-assisted non-radiative recombination at the perovskite/electron transporting layer (ETL) interface. Surface passivation with organic ammonium salt is a powerful strategy to improve the performance of PSCs. Herein, an effective method by using propylamine hydroiodide (PAI) and 1,3-diaminopropane dihydroiodide (PDADI) is reported to modify the perovskite/ETL interface. These two ammonium salts do not form new perovskite but directly passivate the defects on the perovskite surface after annealing. The results show that the PDADI-modified perovskite films possess a lower surface defect density and less non-radiative recombination as well as improved charge carrier transport. Based on this strategy, the PDADI-modified p-i-n PSCs deliver an impressive efficiency of 25.09% (certified 24.58%) with an open-circuit voltage of 1.184 V. Furthermore, the unencapsulated PDADI-modified PSCs also exhibit good storage stability, retaining 91% of initial PCE at 65 °C in a N2 glove box for 1300 h. This strategy provides an efficient route to fabricate highly efficient and stable inverted p-i-n structured PSCs.  相似文献   

5.
Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.  相似文献   

6.
Perovskite solar cells with carbon electrode have a commercial impact because of their facile scalability, low-cost, and stability. In these devices, it remains a challenge to design an efficient hole transport layer (HTL) for robust interfacing with perovskite on one side and carbon on another. Herein, an organic/inorganic double planar HTL is constructed based on polythiophene (P3HT) and nickel oxide (NiOx) nanoparticles to address the named challenge. Through adding an alkyl ammonium bromide (CTAB) modified NiOx nanoparticle layer on P3HT, the planar HTL achieves a cascade type-II energy level alignment at the perovskite/HTL interfaces and a preferential ohmic contact at NiOx/carbon electrode, which greatly benefits in charge collection while suppressing charge transfer recombination. Besides, compared with the single P3HT layer, the planar composite enables a robust interfacial contact by protecting perovskite from being corroded by carbon paste during fabrication. As a result, the blade-coated FA0.6MA0.4PbI3 perovskite solar cells (fabricated in ambient air in fume hood) with carbon electrode deliver an efficiency of 20.14%, the highest value for bladed coated carbon and perovskite solar cells, and withstand 275 h maximum power point tracking in air without encapsulation (95% efficiency retained).  相似文献   

7.
Flexible perovskite solar cells (f-PSCs) show great promise in portable-power applications (e.g., chargers, drones) and low-cost, scalable productions (e.g., roll-to-roll). However, in conventional n–i–p architecture f-PSCs, the low-temperature processed metal oxide electron transport layers (ETLs) usually suffer from high resistance and severe defects that limit the power conversion efficiency (PCE) improvement of f-PSCs. Besides the enhancement in the mobility of metal oxide and passivation for perovskite/ETL interfacial defects reported in previous literature, herein, the electron transport loss between the metal oxide nanocrystallines within the ETL is studied by introducing an amorphous F-doped TiOx (F-TiOx) caulked crystalline SnO2 composite ETL. The F-TiOx in this novel composite ETL acts as an interstitial medium between adjacent SnO2 nanocrystallines, which can provide more electron transport channels, effectively passivate oxygen vacancies, and optimize the energy level arrangement, thus significantly enhancing the electron mobility of ETL and reducing the charge transport losses. The composite ETL-based f-PSCs achieve a high PCE of 22.70% and good operational stability. Furthermore, a moderate roughness of the composite ETL endows f-PSCs with superior mechanical reliability by virtue of a strong coupling at the ETL/perovskite interface, by which the f-PSCs can maintain 82.11% of their initial PCE after 4000 bending cycles.  相似文献   

8.
Suppressing the band tailing and nonradiative recombination caused by massive defects and defect clusters is crucial for mitigating open-circuit voltage (Voc) deficit and improving the device performance of CZTSSe thin film solar cells. Cation substitution is one of the most commonly used strategies to address the above issues. The latest world record efficiency of 13.0% is obtained through this strategy (Ag substitution for Cu). Nevertheless, the importance of the approach to implementing metallic ion doping is easily overlooked by researchers. Here, different approaches are adopted to realize Ga doping and the differences in the efficacy and mechanism are thoroughly investigated. It is found that the secondary phase easily emerged when the physical-based method is employed, and thus challenging to regulate the doping effect. In the case of the chemical-based method, Ga doping can enlarge the depletion region widthand lower the defect activation energyand Urbach energy. Furthermore, GaSn defects located at grain boundaries can expand the energy band bending between GBs and grain interiors (GIs), thereby suppressing the deep defect states and nonradiative recombination. Consequently, power conversion efficiency as high as 12.12% with a Voc of 522 mV is achieved at 2% Ga doping.  相似文献   

9.
Perovskite surface treatment with additives has been reported to improve charge extraction, stability, and/or surface passivation. In this study, treatment of a 3D perovskite ((FAPbI3)1−x(MAPbBr3)x) layer with a thienothiophene-based organic cation (TTMAI), synthesized in this work, is investigated. Detailed analyses reveal that a 2D (n = 1) or quasi-2D layer does not form on the PbI2-rich surface 3D perovskite. TTMAI-treated 3D perovskite solar cells (PSCs) fabricated in this study show improved fill factors, providing an increase in their power conversion efficiencies (PCEs) from 17% to over 20%. It is demonstrated that the enhancement is due to better hole extraction by drift-diffusion simulations. Furthermore, thanks to the hydrophobic nature of the TTMAI, PSC maintains 82% of its initial PCE under 15% humidity for over 380 h (the reference retains 38%). Additionally, semitransparent cells are demonstrated reaching 17.9% PCE with treated 3D perovskite, which is one of the highest reported efficiencies for double cationic 3D perovskites. Moreover, the semitransparent 3D PSC (TTMAI-treated) maintains 87% of its initial efficiency for six weeks (>1000 h) when kept in the dark at room temperature. These results clearly show that this study fills a critical void in perovskite research where highly efficient and stable semitransparent perovskite solar cells are scarce.  相似文献   

10.
Wide-bandgap (WBG) perovskite solar cells (PSCs) have garnered significant attention for their potential applications in tandem solar cells. However, their large open-circuit voltage (VOC) deficit and serious photo-induced halide segregation remain the main challenges that impede their applications. Herein, a post-treatment strategy without thermal annealing is presented to form a 2D top layer of 2-thiopheneethylammonium lead halide (n = 1) on WBG perovskites. This thermal annealing-free post-treatment method can more effectively passivate the defects of WBG methylamine (MA)-free formamidinium/cesium lead iodide/bromide perovskite films and suppress photo-induced perovskite phase segregation, as compared with the thermal annealing method that yields multi-2D phases. The resulting opaque and semi-transparent 1.66 eV-bandgap perovskite solar cells deliver maximum power conversion efficiencies of 21.47% (a small VOC deficit of 0.43 V) and 19.11%, respectively, both of which are among the highest reports for inverted MA-free WBG PSCs. Consequently, four-terminal all-perovskite tandem cells realize a remarkable efficiency of 26.64%, showing great promise for their applications in efficient multi-junction tandem solar cells.  相似文献   

11.
Wide-bandgap (WBG) perovskite solar cells (PSCs) with high performance and stability are in considerable demand to boost tandem solar cell efficiencies. Perovskite bandgap broadening results in a high barrier for enhancing the efficiency of PSCs and phase segregation in perovskite. In this study, it is shown that the residual strain is the key factor affecting the WBG perovskite device efficiency and stability. The dimethyl sulfoxide addition helps lead halide with opening the layer spacing to form intermediate phases that provide more nucleation sites to eliminate lattice mismatch with organic components, which dominates the strain effects on the WBG perovskite growth in a sequential deposition. By minimizing the strain, 1.67 and 1.77 eV nip devices with record efficiencies of 22.28% and 20.45%, respectively, can be achieved. The greatly suppressed phase segregation enables the devices with retained 90–95% of initial efficiency over 4000 h of damp stability and 80–90% of initial efficiency over 700 h of maximum-power-point (MPP) stability. Besides, the 1.67 eV pin devices can achieve a competitive 22.3% efficiency with considerable damp-heat, pre-ultraviolet (pre-UV) aging and MPP tracking stability according to IEC 61215. The final efficiency of more than 28.3% for the perovskite/Si tandem is obtained.  相似文献   

12.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   

13.
All-polymer solar cells (all-PSCs) possess distinguished advantages of excellent morphology stability, thermal stability, and mechanical flexibility. Tandem solar cells, by stacking two sub-cells, can absorb more photons in a wider wavelength range and can reduce thermal losses. However, limitation of polymer acceptors with suitable bandgaps hinders the development of tandem all-PSCs. Herein, highly efficient tandem all-PSCs are fabricated by employing two polymerized small molecular acceptors (PSMAs) of wide bandgap PIDT (1.66 eV) in the front cell and narrow bandgap PY-IT (1.4 eV) in the rear cell. The two sub-cells with the polymer donors of PM7 in front cell and PM6 in rear cell show high open circuit voltage (Voc) of 1.10 V for the front cell and 0.94 V for the rear cell. By rational device optimizations, the best power conversion efficiency of 17.87% is achieved for the tandem all-PSCs with high Voc of 2.00 V. 17.87% is one of the highest efficiency for the all-PSCs, and 2.00 V is one of the highest Voc for all the tandem organic solar cells. Moreover, the tandem all-PSCs show excellent thermal and light-soaking stability compared with their small-molecule counterparts. The results provide insight to the potential of bandgap tuning in PSMAs, and indicate that the tandem architecture is an effective strategy to boost performance of the all-PSCs.  相似文献   

14.
In the past decade, perovskite solar cells (PSCs) have made remarkable progress in improving power conversion efficiency (PCE). In order to further improve the photovoltaic performance and long-term stability of PSCs, the interface layer is essential. A multifunctional cross-linked polyurethane (CLPU) is designed and synthesized via the spontaneous quaternization of polyurethane and 1, 6-diiodohexane on the surface of the perovskite layer. CLPU layer cannot only effectively induce secondary crystallization and passivate the surface defects of perovskite, reduce the non-radiative recombination, but also effectively block the moisture invasion. By this strategy, Cs0.05FA0.95PbI3 PSCs with excellent reproducibility, is realized, achieving a PCE of 23.14% with an open-circuit voltage of 1.11 V, a short-circuit current density of 25.69 mA cm−2, and a fill factor of 0.81. In addition, the unencapsulated devices show enhanced stability in 35 ± 5% relative humidity (RH) near 3000 h and in 65 ± 5% RH over 700 h. This study provides valuable insights into the role of CLPU interface layer in PSCs, which are essential for the design of high-performance devices.  相似文献   

15.
Multijunction/tandem solar cells have naturally attracted great attention because they are not subject to the Shockley–Queisser limit. Perovskite solar cells are ideal candidates for the top cell in multijunction/tandem devices due to the high power conversion efficiency (PCE) and relatively low voltage loss. Herein, sandwiched gold nanomesh between MoO3 layers is designed as a transparent electrode. The large surface tension of MoO3 effectively improves wettability for gold, resulting in Frank–van der Merwe growth to produce an ultrathin gold nanomesh layer, which guarantees not only excellent conductivity but also great optical transparency, which is particularly important for a multijunction/tandem solar cell. The top MoO3 layer reduces the reflection at the gold layer to further increase light transmission. As a result, the semitransparent perovskite cell shows an 18.3% efficiency, the highest reported for this type of device. When the semitransparent perovskite device is mechanically stacked with a heterojunction silicon solar cell of 23.3% PCE, it yields a combined efficiency of 27.0%, higher than those of both the sub‐cells. This breakthrough in elevating the efficiency of semitransparent and multijunction/tandem devices can help to break the Shockley–Queisser limit.  相似文献   

16.
The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub-cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub-cell in such TOSCs can be reduced by increasing the proportion of a non-fullerene acceptor in the active layer. The non-fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub-cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub-cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine-turning of the composition in the front sub-cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained.  相似文献   

17.
Two-terminal, mechanically-stacked perovskite/silicon tandem solar cells offer a feasible way to achieve power conversion efficiencies (PCEs) of over 35%, provided that the state-of-the-art industrial silicon solar cells and perovskite solar cells (PSCs) are fully compatible with one another. Herein, two-terminal, mechanically-stacked perovskite/silicon tandem solar cells are developed by mechanically interconnecting semitransparent PSCs and TOPCon solar cells with a MXene interlayer. The semitransparent PSCs are made from wide-bandgap perovskite Cs0.15FA0.65MA0.20Pb(I0.80Br0.20)3 films. Furthermore, the co-additives KPF6 and CH3NH3Cl(MACl) are employed to reduce grain boundaries and intragranular defects in the perovskite, boosting the PCE of the semitransparent PSCs to a record-high value of 20.96% under reverse scan (RS) through a reduction in non-radiative recombination probability. These optimized semitransparent PSCs are then employed in MXene-interconnected two-terminal, mechanically-stacked tandem solar cells. The enhanced interfacial carrier transportation, with minimal influence on light transmission, imparted by the MXene flakes allows the tandem solar cells to achieve a stabilized PCE of 29.65%. The tandem cells also exhibit acceptable operational stability and are able to retain ≈93% and 92% of their initial PCEs after 120 min of continuous illumination or storage in ambient air for 1000 h, respectively.  相似文献   

18.
With rapid development of photovoltaic technology, flexible perovskite solar cells (f-PSCs) have attracted much attention for their light weight, high flexibility and portability. However, the power conversion efficiency (PCE) achieved so far is not yet comparable to that of rigid devices. This is mainly due to the great challenge of depositing homogeneous and high-quality perovskite films on flexible substrate. In this study, the pre-buried 3-aminopropionic acid hydroiodide (3AAH) additives into the electron transport layer (ETL) and modified the ETL/perovskite (PVK) interface by a bottom-up strategy. 3AAH treatment induced a templated perovskite grain growth and improved the quality of the ETL. By this, the residual stresses generated in PVK during the annealing-cooling process are released and converted into micro-compressive stresses. As a result, the defect density of f-PSCs with pre-buried 3AAH is reduced and the photovoltaic performance is greatly improved, reaching an exceptional PCE of 23.36%. This strategy provides a new idea to bridge the gap between flexible and rigid devices.  相似文献   

19.
Perovskite solar cells (PVSCs) are promising photovoltaic technologies for realizing power sources with outstanding power conversion efficiency (PCE) and low‐cost properties. However, the extraordinary photovoltaic performance can be maximized only if an extremely stabilized device structure is developed. Here, a novel glued poly(ethylene‐co‐vinyl acetate) (EVA) interfacial layer is introduced to fabricate highly efficient and stable PVSCs with excellent waterproofness and flexibility. This strategy can effectively passivate the perovskite surface, reduce defect density, and balance charge transfer, which leads to a champion PCE of 19.31% for a 0.1 cm2 device and 11.73% for a 25 cm2 solar module. More importantly, the formation of a glued EVA thin layer on the surface of perovskite can inhibit ionic migration to the Ag electrode, form favorable interfacial contact and adhesive interaction with the perovskite/[6,6]‐phenyl‐C61‐butyric acid methyl ester to sustain mechanical bending, and produce significant waterproofness from moisture invasion, thus facilitating improvement in the operational stability of the PVSCs. The EVA‐treated PVSCs exhibit superior PCE values of 15.12% for a flexible device (0.1 cm2) and 8.95% for a flexible module (25 cm2), as well as over 85% retention after 5000 bending cycles, which opens up a new strategy for the practical application of PVSCs in portable and wearable electronics.  相似文献   

20.
Stability is the main challenge in the field of organic–inorganic perovskite solar cells (PSCs). Finding low‐cost and stable hole transporting layer (HTL) is an effective strategy to address this issue. Here, a new donor polymer, poly(5,5‐didecyl‐5H‐1,8‐dithia‐as‐indacenone‐alt‐thieno[3,2‐b]thiophene) (PDTITT), is synthesized and employed as an HTL in PSCs, which has a suitable band alignment with respect to the double‐A cation perovskite film. Using PDTITT, the hole extraction in PSCs is greatly improved as compared to commonly used HTLs such as 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐OMeTAD), addressing the hysteresis issue. After careful optimization, an efficient PSC is achieved based on mesoscopic TiO2 electron transporting layer with a maximum power conversion efficiency (PCE) of 18.42% based on PDTITT HTL, which is comparable with spiro‐OMeTAD‐based PSC (19.21%). Since spiro‐based PSCs suffer from stability issue, the operational stability in the PSC with PDTITT HTL is studied. It is found that the device with PDTITT retains 88% of its initial PCE value after 200 h under illumination, which is better than the spiro‐based PSC (54%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号