首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene aerogel microlattices (GAMs) hold great prospects for many multifunctional applications due to their low density, high porosity, designed lattice structures, good elasticity, and tunable electrical conductivity. Previous 3D printing approaches to fabricate GAMs require either high content of additives or complex processes, limiting their wide applications. Here, a facile ion‐induced gelation method is demonstrated to directly print GAMs from graphene oxide (GO) based ink. With trace addition of Ca2+ ions as gelators, aqueous GO sol converts to printable gel ink. Self‐standing 3D structures with programmable microlattices are directly printed just in air at room temperature. The rich hierarchical pores and high electrical conductivity of GAMs bring admirable capacitive performance for supercapacitors. The gravimetric capacitance (Cs) of GAMs is 213 F g?1 at 0.5 A g?1 and 183 F g?1 at 100 A g?1, and retains over 90% after 50 000 cycles. The facile, direct 3D printing of neat graphene oxide can promote wide applications of GAMs from energy storage to tissue engineering scaffolds.  相似文献   

2.
This paper describes the gelation of highly concentrated graphene/polymer dispersions triggered by mild heating. The gel formation is only dependent on the concentration of graphene with 3.25 mg mL?1 as the minimum value for graphene network formation. The graphene gel is then utilized for the preparation of colloidally stable and highly concentrated (52 mg mL?1) graphene pastes that demonstrate excellent performance in screen printing down to lines of 40 μm in width. Printed patterns dried at 100 °C for only 5 min exhibit sheet resistances of 30 Ω ?1 at 25 μm thickness, thus, removing the need for long‐time high temperature annealing, doping, or other treatments. Such a low drying temperature, high printing definition, and compatibility with industrially relevant plastic and paper substrates brings high‐volume roll‐to‐roll application in printed flexible electronics within reach.  相似文献   

3.
柔性电子器件主要应用于折叠手机、医疗健康监测、人工智能和太阳能电池等方面,是当前研究的热点。针对银纳米线(AgNW)与衬底之间存在的粘附性较弱、易剥落、在空气中易氧化而使阻值变大等问题,文章设计了一种以PDMS为柔性衬底的三层透明导电薄膜,探究了曝光次数和氧化石墨烯不同涂覆方式对薄膜光电特性的影响。结果表明,该导电薄膜达到了12 Ω/□的方块电阻,透过率超过80%。在48%的拉伸情况下仍然保持着较好的导电性。  相似文献   

4.
Functional conductive hydrogels are widely used in various application scenarios, such as artificial skin, cell scaffolds, and implantable bioelectronics. However, their novel designs and technological innovations are severely hampered by traditional manufacturing approaches. Direct ink writing (DIW) is considered a viable industrial-production 3D-printing technology for the custom production of hydrogels according to the intended applications. Unfortunately, creating functional conductive hydrogels by DIW has long been plagued by complicated ink formulation and printing processes. In this study, a highly 3D printable poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based ink made from fully commercially accessible raw materials is demonstrated. It is shown that complex structures can be directly printed with this ink and then precisely converted into high-performance hydrogels via a post-printing freeze–thawing treatment. The 3D-printed hydrogel exhibits high electrical conductivity of ≈2000 S m−1, outstanding elasticity, high stability and durability in water, electromagnetic interference shielding, and sensing capabilities. Moreover, the hydrogel is biocompatible, showing great potential for implantable and tissue engineering applications. With significant advantages, the fabrication strategy is expected to open up a new route to create multifunctional hydrogels with custom features, and can bring new opportunities to broaden the applications of hydrogel materials.  相似文献   

5.
Reduced graphene oxide (RGO) films are promising in applications ranging from electronics to flexible sensors. Though high electrical and thermal conductivities have been reported for RGO films, existing thermal conductivity data for RGO films show large variations from 30 to 2600 W m?1 K?1. Further, there is a lack of data at low temperatures (<300 K), which is critical for the understanding of thermal transport mechanisms. In this work, a temperature‐dependent study of thermal (10–300 K) and electrical (10–3000 K) transport in annealed RGO films indicates the potential application of RGO films for sensing temperatures across an extremely wide range. The room‐temperature thermal conductivity increases significantly from 46.1 to 118.7 W m?1 K?1 with increasing annealing temperature from 1000 to 3000 K with a corresponding increase in the electrical conductivity from 5.2 to 1481.0 S cm?1. In addition, films reduced at 3000 K are promising for sensing extreme temperatures as demonstrated through the measured electrical resistivity from 10 to 3000 K. Sensors based on RGO films are advantageous over conventional temperature sensors due to the wide temperature range and flexibility. Thus, this material is useful in many applications including flexible electronics and thermal management systems.  相似文献   

6.
Polymer‐based materials with high electrical conductivity are of considerable interest because of their wide range of applications. The construction of a 3D, compactly interconnected graphene network can offer a huge increase in the electrical conductivity of polymer composites. However, it is still a great challenge to achieve desirable 3D architectures in the polymer matrix. Here, highly conductive polymer nanocomposites with 3D compactly interconnected graphene networks are obtained using a self‐assembly process. Polystyrene (PS) and ethylene vinyl acetate (EVA) are used as polymer matrixes. The obtained PS composite film with 4.8 vol% graphene shows a high electrical conductivity of 1083.3 S/m, which is superior to that of the graphene composite prepared by a solvent mixing method. The electrical conductivity of the composites is closely related to the compact contact between graphene sheets in the 3D structures and the high reduction level of graphene sheets. The obtained EVA composite films with the 3D graphene structure not only show high electrical conductivity but also exhibit high flexibility. Importantly, the method to fabricate 3D graphene structures in polymer matrix is facile, green, low‐cost, and scalable, providing a universal route for the rational design and engineering of highly conductive polymer composites.  相似文献   

7.
3D printing of renewable building blocks like cellulose nanocrystals offers an attractive pathway for fabricating sustainable structures. Here, viscoelastic inks composed of anisotropic cellulose nanocrystals (CNC) that enable patterning of 3D objects by direct ink writing are designed and formulated. These concentrated inks are composed of CNC particles suspended in either water or a photopolymerizable monomer solution. The shear‐induced alignment of these anisotropic building blocks during printing is quantified by atomic force microscopy, polarized light microscopy, and 2D wide‐angle X‐ray scattering measurements. Akin to the microreinforcing effect in plant cell walls, the alignment of CNC particles during direct writing yields textured composites with enhanced stiffness along the printing direction. The observations serve as an important step forward toward the development of sustainable materials for 3D printing of cellular architectures with tailored mechanical properties.  相似文献   

8.
Soft polymer materials, which are similar to human tissues, have played critical roles in modern interdisciplinary research. Compared with conventional methods, 3D printing allows rapid prototyping and mass customization and is ideal for processing soft polymer materials. However, 3D printing of soft polymer materials is still in the early stages of development and is facing many challenges including limited printable materials, low printing resolution and speed, and poor functionalities. The present review aims to summarize the ideas to address these challenges. It focuses on three points: 1) how to develop printable materials and make unprintable materials printable, 2) how to choose suitable methods and improve printing resolution, and 3) how to directly construct functional structures/systems with 3D printing. After a brief introduction on this topic, the mainstream 3D printing technologies for printing soft polymer materials are reviewed, with an emphasis on improving printing resolution and speed, choosing suitable printing techniques, developing printable materials, and printing multiple materials. Moreover, the state‐of‐the‐art advancements in multimaterial 3D printing of soft polymer materials are summarized. Furthermore, the revolutions brought about by 3D printing of soft polymer materials for applications similar to biology are highlighted. Finally, viewpoints and future perspectives for this emerging field are discussed.  相似文献   

9.
4D printing has attracted tremendous interest since its first conceptualization in 2013. 4D printing derived from the fast growth and interdisciplinary research of smart materials, 3D printer, and design. Compared with the static objects created by 3D printing, 4D printing allows a 3D printed structure to change its configuration or function with time in response to external stimuli such as temperature, light, water, etc., which makes 3D printing alive. Herein, the material systems used in 4D printing are reviewed, with emphasis on mechanisms and potential applications. After a brief overview of the definition, history, and basic elements of 4D printing, the state‐of‐the‐art advances in 4D printing for shape‐shifting materials are reviewed in detail. Both single material and multiple materials using different mechanisms for shape changing are summarized. In addition, 4D printing of multifunctional materials, such as 4D bioprinting, is briefly introduced. Finally, the trend of 4D printing and the perspectives for this exciting new field are highlighted.  相似文献   

10.
Due to low density, extremely high electrical and thermal conductivities, graphene has great potential to construct lightweight thermal conductive paper for high‐power electric devices. However, the remarkable properties of graphene are on a molecular level and difficult to achieve when processed into macroscopic paper. Here, an effective route to construct ultrahigh conductive graphene paper is developed. First, large‐volume, high‐concentration, plane‐defect‐free, few‐layer graphene dispersion is fast produced from graphite at high yield through ball milling. The exfoliated graphene dispersion is further processed into graphene paper through fast filtration, thermal treatment, and mechanical compression. The electrical and thermal conductivities of the resultant graphene paper are as high as 2231 S cm?1 and 1529 W m?1 K?1, superior to previously reported graphene papers. Structural analyses confirm that the ultrahigh conductivities are attributed to high quality of graphene sheets, their compact ordered stacking, and large graphitic crystalline domain size, which improve electron and phonon transport within basal plane of graphene sheet and between graphene sheets.  相似文献   

11.
Electrically conductive 3D periodic microscaffolds are fabricated using a particle-free direct ink writing approach for use as neuronal growth and electrophysiological recording platforms. A poly (2-hydroxyethyl methacrylate)/pyrrole ink, followed by chemical in situ polymerization of pyrrole, enables hydrogel printing through nozzles as small as 1 µ m. These conductive hydrogels can pattern complex 2D and 3D structures and have good biocompatibility with test cell cultures ( ≈ 94.5% viability after 7 days). Hydrogel arrays promote extensive neurite outgrowth of cultured Aplysia californica pedal ganglion neurons. This platform allows extracellular electrophysiological recording of steady-state and stimulated electrical neuronal activities. In summation, this 3D conductive ink printing process enables the preparation of biocompatible and micron-sized structures to create customized in vitro electrophysiological recording platforms.  相似文献   

12.
Thermal conductivity of free‐standing reduced graphene oxide films subjected to a high‐temperature treatment of up to 1000 °C is investigated. It is found that the high‐temperature annealing dramatically increases the in‐plane thermal conductivity, K, of the films from ≈3 to ≈61 W m?1 K?1 at room temperature. The cross‐plane thermal conductivity, K, reveals an interesting opposite trend of decreasing to a very small value of ≈0.09 W m?1 K?1 in the reduced graphene oxide films annealed at 1000 °C. The obtained films demonstrate an exceptionally strong anisotropy of the thermal conductivity, K/K ≈ 675, which is substantially larger even than in the high‐quality graphite. The electrical resistivity of the annealed films reduces to 1–19 Ω □?1. The observed modifications of the in‐plane and cross‐plane thermal conductivity components resulting in an unusual K/K anisotropy are explained theoretically. The theoretical analysis suggests that K can reach as high as ≈500 W m?1 K?1 with the increase in the sp2 domain size and further reduction of the oxygen content. The strongly anisotropic heat conduction properties of these films can be useful for applications in thermal management.  相似文献   

13.
Owing to their small size, biocompatibility, unique and tunable photoluminescence, and physicochemical properties, graphene quantum dots (GQDs) are an emerging class of zero‐dimensional materials promising a wide spectrum of novel applications in bio‐imaging, optical, and electrochemical sensors, energy devices, and so forth. Their widespread use, however, is largely limited by the current lack of high yield synthesis methods of high‐quality GQDs. In this contribution, a facile method to electrochemically exfoliate GQDs from three‐dimensional graphene grown by chemical vapor deposition (CVD) is reported. Furthermore, the use of such GQDs for sensitive and specific detection of ferric ions is demonstrated.  相似文献   

14.
Printing has drawn a lot of attention as a means of low per‐unit cost and high throughput patterning of graphene inks for scaled‐up thin‐form factor device manufacturing. However, traditional printing processes require a flat surface and are incapable of achieving patterning onto 3D objects. Here, a conformal printing method is presented to achieve functional graphene‐based patterns onto arbitrarily shaped surfaces. Using experimental design, a water‐insoluble graphene ink with optimum conductivity is formulated. Then single‐ and multilayered electrically functional structures are printed onto a sacrificial layer using conventional screen printing. The print is then floated on water, allowing the dissolution of the sacrificial layer, while retaining the functional patterns. The single‐ and multilayer patterns can then be directly transferred onto arbitrarily shaped 3D objects without requiring any postdeposition processing. Using this technique, conformal printing of single‐ and multilayer functional devices that include joule heaters, resistive deformation sensors, and proximity sensors on hard, flexible, and soft substrates, such as glass, latex, thermoplastics, textiles, and even candies and marshmallows, is demonstrated. This simple strategy promises to add new device and sensing functionalities to previously inert 3D surfaces.  相似文献   

15.
The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.  相似文献   

16.
Microfibers with conductivity of 649 ± 60 S/cm are introduced through a carbonization of well‐aligned graphene oxide (GO) – nanofibrillated cellulose (NFC) hybrid fibers. GO acts as a template for NFC carbonization, which changes the morphology of carbonized NFC from microspheres to sheets while improving the carbonization of NFC. Meanwhile, the carbonized NFC repairs the defects of reduced GO (rGO) and links rGO sheets together. The GO templated carbonization of NFC as well as the alignment of the building blocks along the fiber direction leads to excellent conductivity. Conductive microfibers are evaluated as lithium ion battery anodes, which can be applied in wearable electronics. This approach to make conductive microfibers and the low cost raw materials used in this work may be applied to other carbon based conductive structures.  相似文献   

17.
Prior studies on carbon-filler based, conductive polymer composites have mainly investigated how conductive filler morphology and concentration can tailor a material's electrical conductivity and overlooks the effects of filler alignment due to the difficulty to control and quickly quantify the filler alignment. Here, direct ink write 3D printing's unique ability is utilized to control carbon fiber alignment with a single process parameter, velocity ratio, to instantaneously activate or deactivate the electrical network in composites. Maximum electrical conductivity is achieved by randomly aligning carbon fibers that enhances the chance of direct fiber-to-fiber contact and, thus, activating the electrical network. However, aligning the fibers by increasing the velocity ratio disrupts the electrical network by minimizing fiber-to-fiber contact that resulted in a drastic decrease in electrical conductivity by as much as five orders of magnitude in both short and long carbon fiber composites. With this study, this study demonstrates that electrically conductive or insulative composites can be fabricated sequentially with a single ink. This novel ability to instantaneously control the electrical conductivity of carbon fiber reinforced composites allow to directly embed conductive pathways into designs to 3D print multifunctional composites that are capable of localized heating and self-sensing.  相似文献   

18.
3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.  相似文献   

19.
Reduced graphene oxide (RGO) is an important graphene derivative for applications in photonics and optoelectronics because of the band gap created by chemical oxidation. However, most RGO materials made by chemically exfoliated graphite oxide are 2D flakes. Their optoelectronic performance deteriorates significantly as a result of weak light‐matter interaction and poor electrical contact between stacking flakes. Here we report a bicontinuous 3D nanoporous RGO (3D np‐RGO) with high optoelectronic performance for highly sensitive photodetectors. 3D np‐RGO demonstrates a over 40 times higher light absorption than monolayer graphene materials and at least two orders of magnitude higher electron mobility than conventional RGO from discrete RGO flakes. The np‐RGO with an optimal reduction state shows ultrahigh photoresponse of 3.10 3 104 A W?1 at room temperature, approximately four orders of magnitude higher than graphene and other graphene derivatives at similar levels of light intensity radiations, and the excellent external quantum efficiency of 1.04 3 107% better than commercial silicon photodetector. The ultrahigh capability of conversing photons to photocurrent originates from strongly enhanced light absorption, facilitated photocarrier transport, and tunable oxygenous defects and reduction states in the 3D interconnected bicontinuous RGO network.  相似文献   

20.
Self-organizing 2D sheets into a 3D structure with a well-defined arrangement and tuned bandgap has garnered significant interest. However, there exist challenges such as scalable and feasible synthetic methods and preservation of 2D properties while preventing re-stacking. Herein, a facile method for the mass production of 2D manifolds of graphene oxide (GO), which are 3D microtubes, while maintaining their 2D properties by applying shear to roll up GO sheets, is reported. The GO mesotubes are formed by shear flow in aluminum–glass parallel plates. Redox reaction plays a vital role during the formation of GO mesotubes by the vorticity alignment during slow shear flow. A high yield of 94% is achieved at an initial pH of 2.2. The maximum d-spacing of the GO sheet in the tube wall is 21 nm, indicating no re-stacking of the graphitic structure. It is demonstrated that the GO mesotubes behaves like a soft gel, rendering them a candidate material for soft robotics, e-skins, and a visible light sensor owing to their reduced optical bandgap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号