首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tandem organic light-emitting diodes (OLEDs) have been studied to improve the long-term stability of OLEDs for 10 years. The key element in a tandem OLEDs is the charge generation layer (CGL), which provides electrons and holes to the adjacent sub-OLED units. Among different types of CGLs, n-doped electron transporting layer (ETL)/transition metal oxide (TMO)/hole transporting layer (HTL) has been intensively studied. Past studies indicate that this kind of CGL can achieve the desired efficiency enhancement, however, its long-term stability was reported not good and sometime even poor than a single OLED. This issue was not well addressed over the past 10 years. Here, for the first time, we found that this is caused by the unwanted diffusion of TMO into the underlying n-doped ETL layer and can be well resolved by introducing an additional diffusion suppressing layer (DSL) between them. Our finding will fully release the potential of TMO-based CGL in tandem OLEDs.  相似文献   

2.
《Organic Electronics》2008,9(3):285-290
The triazine compound 4,4′-bis-[2-(4,6-diphenyl-1,3,5-triazinyl)]-1,1′-biphenyl (BTB) was developed for use as an electron transport material in organic light emitting devices (OLEDs). The material demonstrates an electron mobility of ∼7.2 × 10−4 cm2 V−1 s−1 at a field of 8.00 × 105 V cm−1, which is 10-fold greater than that of the widely used material tris(8-hydroxyquinoline) aluminum (AlQ3). OLEDs with a BTB electron transport layer showed a ∼1.7–2.5 V lower driving voltage and a significantly increased efficiency, compared to those with AlQ3. These results suggest that BTB has a strong potential for use as an OLED electron transport layer material.  相似文献   

3.
We have fabricated an improved organic photovoltaic (OPV) cell in which organic heterointerface layer is inserted between indium-tin-oxide (ITO) anode and copper-phthalocyanine (CuPc) donor layer in the conventional OPV cell of ITO/CuPc/fullerene (C60)/bathophenanthroline (Bphen)/Al to enhance the power conversion efficiency (PCE) and fill factor (FF). The inserted ITO-buffer layer consists of electron-transporting layer (ETL) and hole-transporting layer (HTL). We have changed the ETL and HTL materials variously and also changed their layer thickness variously. It is confirmed that ETL materials with higher LUMO level than the work function of ITO give low PCE and FF. All the double layer buffers give higher PCE than a single layer buffer of TAPC. The highest PCE of 1.67% and FF of 0.57% are obtained from an ITO buffer consisted of 3 nm thick ETL of hexadecafkluoro-copper-phthalocyanine (F16CuPc) and 3 nm thick HTL of 1,1-bis-(4-methyl-phenyl)-aminophenylcyclohexane (TAPC). This PCE is 1.64 times higher than PCE of the cell without ITO buffer and 2.98 times higher than PCE of the cell with single layer ITO buffer of TAPC. PCE is found to increase with increasing energy difference (ΔE) between the HOMO level of HTL and LUMO level of F16CuPc in a range of ΔE < 0.6 eV. From the ΔE dependence of PCE, it is suggested that electrons moved from ITO to the LUMO level of the electron-transporting F16CuPc are recombined, at the F16CuPc/HTL-interface, with holes transported from CuPc to the HOMO level of HTL in the double layer ITO buffer ETL, leading to efficient extraction of holes photo-generated in CuPc donor layer.  相似文献   

4.
《Organic Electronics》2008,9(1):30-38
A multilayer organic light-emitting device (OLED) has been fabricated with a thin (0.3 nm) lithium fluoride (LiF) layer inserted inside an electron transport layer (ETL), aluminum tris(8-hydroxyquinoline) (Alq3). The LiF electron injection layer (EIL) has not been used at an Al/Alq3 interface in the device on purpose to observe properties of LiF. The electron injection-limited OLED with the LiF layer inside 50 nm Alq3 at a one forth, a half or a three forth position assures two different enhancing properties of LiF. When the LiF layer is positioned closer to the Al cathode, the injection-limited OLED shows enhanced injection by Al interdiffusion. The Al interdiffusion at least up to 12.5 nm inside Alq3 rules out the possible insulating buffer model in a small molecule bottom-emission (BE) OLED with a thin, less than one nanometer, electron injection layer (EIL). If the position is further away from the Al cathode, the Al diffusion reaches the LiF layer no longer and the device shows the electroluminescence (EL) enhancement without an enhanced injection. The suggested mechanism of LiF EL efficiency enhancer is that the thin LiF layer induces carrier trap sites and the trapped charges alters the distribution of the field inside the OLED and, consequently, gives a better recombination of the device. By substituting the Alq3 ETL region with copper phthalocyanine (CuPc), all of the electron injection from the cathode of Al/CuPc interface, the induced recombination at the Alq3 emitting layer (EML) by the LiF EL efficiency enhancer, and the operating voltage reduction from high conductive CuPc can be achieved. The enhanced property reaches 100 mA/cm2 of current density and 1000 cd/m2 of luminance at 5 V with its turn-on slightly larger than 2 V. The enhanced device is as good as our previously reported non-injection limited LiF EIL device [Yeonjin Yi, Seong Jun Kang, Kwanghee Cho, Jong Mo Koo, Kyul Han, Kyongjin Park, Myungkeun Noh, Chung Nam Whang, Kwangho Jeong, Appl. Phys. Lett. 86 (2005) 213502].  相似文献   

5.
Using high-work-function material MoO3 as a p-type dopant, efficient single-layer hybrid organic light-emitting diodes (OLEDs) with the p–i–n homojunction structure are investigated. When MoO3 and Cs2CO3 are doped into the conventional emitting/electron-transport material tris-(8-hydroxyquinoline) aluminum (Alq3), respectively, a significant increase in p- and n-type conductivities is observed compared to that of intrinsic Alq3 thin films. With optimal doping, the hole and electron mobilities in Alq3:MoO3 and Alq3:Cs2CO3 films was estimated to be 9.76 × 10−6 and 1.26 × 10−4 cm2/V s, respectively, which is about one order of magnitude higher than that of the undoped device. The p–i–n OLEDs outperform undoped (i–i–i) and single-dopant (p–i–i and i–i–n) OLEDs; they have the lowest turn-on voltage (4.3 V at 1 cd/m2), highest maximum luminance (5860 cd/m2 at 11.4 V), and highest luminous efficiency (2.53 cd/A at 100 mA/cm2). These values are better than those for bilayer heterojunction OLEDs using the same emitting layer. The increase in conductivity can be attributed to the charge transfer process between the Alq3 host and the dopant. Due to the change of carrier concentration in the Alq3 films, the Fermi level of Alq3 is close to the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy levels upon p- and n-type doping, respectively, and the carrier injection efficiency can thus be enhanced because of the lower carrier injection barrier. The carriers move closer to the center energy levels of the HOMO or LUMO distributions, which increases the hopping rate for charge transport and results in an increase of charge carrier mobility. The electrons are the majority charge carriers, and both the holes and electrons can be dramatically injected in high numbers and then efficiently recombined in the p–i–n OLEDs. As a result, the improved conductivity characteristics as well as the appropriate energy levels of the doped layers result in improved electroluminescent performance of the p–i–n homojunction OLEDs.  相似文献   

6.
《Organic Electronics》2014,15(3):675-679
Tandem white organic light-emitting device (WOLED) using non-modified Ag film as cathode and interconnecting layer is demonstrated. Effective electron injection is achieved when Ag is deposited on 4,7-diphenyl-1,10-phenanthroline electron transporting layer without any modified layer. Single OLED with Ag cathode shows comparable performance to that of device with Mg:Ag cathode. Such tandem WOLED exhibits low driving voltage, high power efficiency (15.1 lm/W at 1000 cd/m2) and low efficiency roll-off. The working mechanisms of single and tandem devices were discussed in detail. These results could provide a simple method to fabricate high performance tandem white OLED.  相似文献   

7.
We report a highly transparent organic/metal hybrid cathode of a Cs-doped electron transport layer (Cs-ETL)/Ag for transparent organic light-emitting diode (TOLED) applications. Particular attention is paid to the surface morphology on the Ag film and its influence on the optical transparency and electrical conductivity. With the use of Cs-ETL, a smooth and continuous surface morphology of Ag film was achieved, leading to a high transmittance of ~75% in TOLED with a low sheet resistance of 4.5 Ω/Sq in cathode film. We successfully applied our Cs-ETL/Ag transparent cathode to fabricate highly transparent OLEDs. Our approach suggests a new electrode structure for transparent OLED applications.  相似文献   

8.
Two novel p-phenylenediamine-substituted fluorenes have been designed and synthesized. Their applications as hole injection materials in organic electroluminescent devices were investigated. These materials show a high glass transition temperature and a good hole-transporting ability. It has been demonstrated that the 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) doped p-phenylene-diamine-substituted fluorenes, in which F4-TCNQ acts as p-type dopant, are highly conducting with a good hole-transporting property. The organic light emitting devices (OLEDs) utilizing these F4-TCNQ-doped materials as a hole injection layer were fabricated and investigated. The pure Alq3-based OLED device shows a current efficiency of 5.2 cd/A at the current density of 20 mA/cm2 and the operation lifetime is 1500 h with driving voltage increasing only about 0.7 mV/h. The device performance and stability of this hole injection material meet the benchmarks for the commercial requirements for OLED materials.  相似文献   

9.
We report a highly near infrared (NIR) transparent MoO3-doped In2O3 (IMO) film prepared by hetero target sputtering for use as a transparent anode in phosphorescent organic light emitting diodes (OLEDs). Effective activation of Mo dopant in the In2O3 matrix and good crystallinity with the (2 2 2) preferred orientation from by rapid thermal annealing (RTA) led to the lowest resistivity of 4.25 × 10?4 Ohm cm and sheet resistance of 16.9 Ohm/square, comparable to a conventional ITO anode without lose of transparency in the NIR region. Due to high carrier mobility in the IMO matrix, IMO film exhibited higher transmittance in the visible and NIR regions compared to ITO film even though it has a similar resistivity. Both synchrotron X-ray scattering and high resolution transmission electron microscope examinations showed that the optimized IMO film annealed at 600 °C had a rectangular shaped columnar structure with a strongly preferred (2 2 2) orientation. Identical current density–voltage–luminance and quantum efficiency of the phosphorescent OLED fabricated on an IMO anode were comparable to those of the OLED on a reference ITO anode due to the high transparency and low resistivity of the IMO anode.  相似文献   

10.
In general, electron transport layer (ETL) in organic light-emtting diodes (OLEDs) consists of single component of electron transporting material (ETM) or a mixture with n-dopant such as 8-hydroxyquinolinolato-lithium (Liq). However, there exists a limit to controlling a wide range of carrier density in OLEDs according to the required characteristics of the devices due to electrically insulating property of Liq. Here, we suggest a universal strategy to construct an efficient ETL. We synthesized two ETMs, diphenyl-[4-(10-phenyl-anthracene-9-yl)-phenyl]-amine (An-Ph) and phneyl-[4-(10-phenyl-anthracene-9-yl)-phenyl]-pyridin-3-yl-amine (An-Py) that have the same core structures with different polarities in functional groups. The electrical characteristics of electron-only-devices (EODs) were investigated by space charge limited current (SCLC) modeling and impedance spectroscopy analysis. Interestingly, the homostructure type ETL composed of An-Ph and An-Py showed not only superior electron transporting capability, but also the possibility of controlling electron injection and transporting in a wide range compared to the heterostructure type ETL of An-Ph and Liq. Compared to the An-Ph-only EOD, the electron mobility in 75% An-Py-mixed homostructure EOD increased by almost 4 orders of magnitude. Such dramatic variation of electron mobility was achieved thanks to the molecular design strategy to separate charge injection and charge transport regions within a molecule, which consequently induced the giant surface potential (GSP) effect between the ETL/cathode interface. As a result, the external quantum efficiency (EQE) of blue fluorescent and phosphorescent OLEDs with the homostructure ETLs was enhanced by 28.6% and 34%, respectively, compared to that of each control device without manipulating outcoupling effects.  相似文献   

11.
A novel indolo[3,2-b]carbazole derivative containing B(Mes)2 groups, 5,11-dibutyl-2,8-bis(dimesitylboryl) indolo[3,2-b]carbazole (DBDMBICZ), was synthesized and structurally characterized by elemental analysis, NMR, MS. The thermal, electrochemical and photophysical properties of DBDMBICZ were characterized by thermogravimetric analysis, electrochemical methods, UV–vis absorption spectroscopy and fluorescence spectroscopy. DBDMBICZ exhibited high fluorescence quantum yields (Φmax = 0.76) in solution and excellent thermal stability (Td = 290 °C, Tg = 170 °C) and electrochemical stability. The multi-layered OLEDs devices with the configuration of ITO/NPB/CBP/light-emitting layer/Bphen/LiF/Al are fabricated by using DBDMBICZ as light-emitting layer. The devices show the same pure blue emissions at different voltages and relative good electroluminescent performances. The results indicate that DBDMBICZ has potential applications as an excellent optoelectronic material in optical field.  相似文献   

12.
《Organic Electronics》2008,9(1):77-84
We have demonstrated bipyridyl substituted triazole derivatives (Bpy-TAZs) as an electron-transporting material for organic light-emitting devices (OLEDs). Substitution of triazole with bipyridyl is a good way to improve electron-transporting ability of triazoles with keeping good hole-blocking ability, which is a useful property of triazole derivatives. A Bpy-TAZ has high electron mobility of above 10−4 cm2/V s. Moreover, by employing one of Bpy-TAZs as a hole-blocking and electron-transporting material for phosphorescent OLEDs, lower operation voltage was achieved with keeping the same external quantum efficiency of electroluminescence (almost 10%) as compared with the conventional hole-blocking and electron-transporting bilayer consisting of bathocuproine and tris (8-hydroxyquinolinato) aluminum.  相似文献   

13.
High-efficiency white emission is crucial to the design of energy-saving display and lighting panels, whereas solution-process feasibility is highly desirable for large area-size and cost-effective roll-to-roll manufacturing. In this study, we demonstrate highly-efficient, bright and chromaticity stable white organic light emitting diodes (OLEDs) with solution-processed single emissive layer. The resultant best white OLED shows excellent electroluminescence performance with forward-viewing external quantum efficiency, current efficiency and power efficiency of 22.7%, 48.8 cd A 1 and 27.8 lm W 1 at 100 cd m 2, respectively, with a maximum luminance of 19,590 cd m 2. Furthermore, we also observed an increment of 112% in the power efficiency, 86.9% in the current efficiency and a decrement of 39.2% in the external quantum efficiency at 100 cd m 2 as the doping concentration of blue dye was increased from 10 wt% to 25 wt% in the devices. The better efficiency performance may be attributed to the effective exciton-confining device architecture and low-energy barrier for electrons to inject from the hole-blocking electron-transport layer to the host layer.  相似文献   

14.
In this paper, we demonstrated the changes of electrical and optical characteristics of a phosphorescent organic light-emitting device (OLED) with tris(phenylpyridine)iridium Ir(ppy)3 thin layer (4 nm) slightly codoped (1%) inside the emitting layer (EML) close to the cathode side. Such a thin layer helped for electron injection and transport from the electron transporting layer into the EML, which reduced the driving voltage (0.40 V at 100 mA/cm2). Electroluminescence (EL) spectral shift at different driving voltage was observed in our blue OLED with [(4,6-di-fluoropheny)-pyridinato-N,C2′]picolinate (FIrpic) emitter, which came from the recombination zone shift. With the incorporation of thin-codoped Ir(ppy)3, such EL spectral shift was almost undetectable (color coordinate shift (0.000, 0.001) from 100 to 10,000 cd/m2), due to the compensation of Ir(ppy)3 emission at low driving voltage. Such a methodology can be applied to a white OLED which stabilized the EL spectrum and the color coordinates ((0.012, 0.002) from 100 to 10,000 cd/m2).  相似文献   

15.
New host materials (BCz–DBT and BCz–DBF) are synthesized by regrouped 3,3-bicarbazole (BCz) and dibenzothiophene (DBT)/dibenzofuran (DBF). Their thermal, electrochemical, electronic absorption and photoluminescent properties are also carefully investigated. The materials exhibit high glass transition temperatures (Tg) of 134 °C and 139 °C, respectively. This kind of molecular design can effectively achieve high triplet energies and suitable highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO) energy levels. High external quantum efficiencies (EQE) of sky blue (EQE = 25%) and three-color white (EQE = 21.4%) phosphorescent OLEDs have been achieved by using BCz–DBF as the host material.  相似文献   

16.
Based on a modified electromagnetic theory, a bilayer metal cathode consisting of an electron injection layer and a silver (Ag) layer is designed to improve the color chromaticity in blue top-emitting organic light-emitting diodes (TEOLEDs). The effects of the complex refractive index of the electron injection material on the reflectivity and transmittivity of the bilayer cathode are investigated in detail, and then samarium (Sm) is selected as the electron injection material due to its proper refractive index of ~1.22 + 1.12i and work function of ~2.7 eV. Then, the emission peak wavelength, the full width at half maximum, and the Commission International de L’Eclairage coordinates of the blue TEOLEDs with different Sm/Ag bilayer cathodes are calculated and discussed. According to the theoretical results, a blue TEOLED with the optimized bilayer cathode of Sm (15 nm)/Ag (5 nm) is fabricated. The measurement results indicate that the blue TEOLED possesses an excellent chromaticity which is even better than that of a bottom-emitting organic light-emitting diode. Besides, the excellent angle stability is observed in the blue TEOLED even with a large viewing angle change of 0–75°.  相似文献   

17.
We demonstrated an organic/inorganic multi-barrier and encapsulation for flexible OLED devices. The multi-barrier consisted of a silica nanoparticle-embedded hybrid nanocomposite, in short, S-H nanocomposite, and MgO, which were used as organic and inorganic materials, respectively. The S-H nanocomposite was spin-coated followed by UV curing. The thickness of the S-H nanocomposite was 200 nm, and 40 nm of MgO was deposited by atomic layer deposition (ALD) using Mg(CpEt)2 and H2O at 70 °C. The results of a Ca test showed that the 4.5 dyads of the MgO/S-H nanocomposite had a low water vapor transmission rate (WVTR) of 4.33 × 10?6 g/m2/day and an optical transmittance of 84%. The normalized luminance degradation of the thin film encapsulated OLED was also identical to that of glass-lid encapsulation after 1000 h of the real operation time. We proposed low temperature ALD as a deposition method to create relatively thin film for OLED passivation without degradation, such as creation of dark spots. The results confirmed that it may be feasible for our multi-barrier to passivate flexible OLEDs devices.  相似文献   

18.
We demonstrate simplified doping-free orange phosphorescent organic light-emitting diodes (OLEDs) based on ultrathin emission layer. The optimized orange device has the maximum current efficiency of 52.1 cd/A and power efficiency of 36.3 lm/W, respectively. Efficient simplified doping-free white OLEDs employing blue and orange ultrathin emission layers have excellent color stability, which is attributed to the avoidance of the movement of charges recombination zone and no differential color aging. One white device exhibits high efficiency of 33.6 cd/A (30.1 lm/W). Moreover, the emission mechanism of doping-free orange and white OLEDs is also discussed.  相似文献   

19.
The relationship between thickness of electron transport layer (ETL) and device performance of organic light-emitting diodes (OLEDs) was investigated. Especially, we prepared various OLEDs by varying the thickness of ETL to investigate the difference of device performance. Very interestingly, the device efficiency of green phosphorescent organic light emitting diodes (PHOLEDs) was significantly improved when the thickness of ETL was optimized even though we did not change any materials for such devices except that we applied highly conductive Li doped ETL. This means that the only one factor which is associated with an improvement of device efficiency could be originated from the constructive optical interference. As a result, the simple modification of PHOLEDs only by changing the optical thickness condition causes a dramatic improvement of current efficiency (up to 82.4 cd/A) as well as external quantum efficiency (EQE, up to 23.8%), respectively. Those values correspond to the much more improved ones (by ∼34.4%) compared to those obtained from the normal devices with thin ETL as a reference.  相似文献   

20.
Efficient solution-processed color-stable and color-tunable white organic light emitting diodes (OLEDs) have been realized by judicious selection of the host materials for the emission layers. The color-tunable OLED demonstrates the unique characteristic of modulating the electroluminescence by using the applied voltage of the device and displays color temperatures ranging from 1600 K to 4600 K around the daylight locus, with a peak external quantum efficiency of 13.6% and a peak current efficiency of 22.5 cd A−1. On the other hand, the chromaticity-stable device shows a negligible color change, from 300 to 2000 nits. The manipulation of chromaticity is attributed to the energy transfer dynamics of the hosts and dopants under different electric fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号