首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
某高硫铜矿石磁黄铁矿和绿泥石等易泥化脉石矿物含量较高,且磁黄铁矿的可浮性和磁性差异较大,对铜硫分离浮选干扰很大。根据矿石性质,采用铜优先浮选—磁选回收磁黄铁矿—硫浮选工艺进行了选矿试验研究,即首先在较低碱度下采用铜选择性捕收剂组合(BK-306 TL-1)优先选铜;然后采用磁选回收磁性磁黄铁矿,再以高效硫活化剂BK546和组合捕收剂(丁基黄药 AT608)强化浮选回收硫矿物,实现了矿石中铜、硫的有效回收。闭路试验获得含铜24.81%、铜回收率86.31%的铜精矿,含硫37.83%、含铁58.21%、磁硫品位(Fe S)96.04%、硫回收率40.60%的磁黄铁硫精矿,以及含硫46.05%、硫回收率47.90%的硫精矿,硫总回收率为88.50%。  相似文献   

2.
对某含复杂磁黄铁矿铜硫矿石进行了选矿工艺流程的试验研究。根据矿石性质,采用铜优先浮选—磁选—硫浮选和磁选—铜浮选—硫浮选两种原则工艺流程进行试验研究,通过铜优先浮选(中矿顺序返回)—磁选—硫浮选、铜优先浮选(中矿再磨再选)—磁选—硫浮选和磁选—铜浮选—硫浮选三种试验方案的工艺流程和闭路试验指标的对比分析,最终确定了铜优先浮选(中矿顺序返回)—磁选—硫浮选的工艺流程,闭路试验获得含铜24. 81%、铜回收率86. 31%的铜精矿,含硫37. 83%、含铁58. 21%、磁硫品位(Fe+S) 96. 04%、硫回收率40. 60%的磁黄铁硫精矿,以及含硫46. 05%、硫回收率47. 90%的硫精矿,硫总回收率为88. 50%。  相似文献   

3.
对秘鲁某铁多金属矿含Cu 0.127%、Au 0.08 g/t、S 2.08%、Fe 40.56%的深部矿石进行了选矿工艺试验研究。该矿原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,根据矿石性质,采用铜硫等可浮—硫浮选—磁选和铜硫等可浮—磁选—铁精矿浮选脱硫两种原则工艺流程进行试验研究,铜硫等可浮分选时,采用选择性的铜捕收剂BK306在无碱条件下将铜和部分易浮硫化物浮出,然后进行铜硫分离回收铜、金;最后通过磁选从浮选尾矿中回收铁。通过铜硫等可浮(粗精矿再磨精选分离)—硫强化浮选—磁选和铜硫等可浮(粗精矿再磨精选分离)—磁选—铁精矿强化浮选脱硫两种试验方案的工艺流程和闭路试验指标的对比分析,最终确定了铜硫等可浮(粗精矿再磨精选分离)—磁选—铁精矿强化浮选脱硫的工艺流程,闭路试验获得含铜19.68%、含金8.26 g/t、铜回收率73.19%、金回收率41.83%的铜精矿,含硫35.58%、硫回收率26.02%的硫精矿,以及含铁69.23%、含硫0.16%、铁回收率91.40%的铁精矿。该工艺既可实现...  相似文献   

4.
铜陵有色某矿山硫矿物以黄铁矿和磁黄铁矿为主,其中黄铁矿可浮性较好,磁黄铁矿可浮性相对较差,在浮选过程中容易氧化、掉槽,且磁黄铁矿与脉石矿物可浮性相近,采用浮选工艺很难获得高品质的硫精矿。根据黄铁矿和磁黄铁矿可浮性的差异、及其磁黄铁具有弱磁性的性质特点,采用分步浮选工艺,优先回收可浮性较好的黄铁矿,中矿以“强磁+浮选”工艺回收可浮性相对较差的磁黄铁矿,实现了对黄铁矿和磁黄铁矿的综合回收。闭路试验指标为:以黄铁矿为主的“硫精矿1”含硫47.78%、含铁43.83%,硫回收率为57.11%;以磁黄铁矿为主的“硫精矿2”含硫36.40%、含铁55.60%,硫回收率为22.12%;总硫精矿含硫43.94%、含铁47.80%,“全硫+铁”品位为91.74%,硫回收率为79.23%。总硫精矿经烧酸后,硫酸烧渣中铁品位在65%以上,附加值大大提高,具有广泛的经济效益和社会效益。  相似文献   

5.
内蒙某磁黄铁矿型硫化铜矿选矿试验   总被引:2,自引:0,他引:2  
内蒙某磁黄铁矿型硫化铜矿由于采出矿石硫品位不断升高,给铜硫综合回收带来了不利影响。为此,对铜硫综合回收工艺及技术条件进行了研究,结果表明,在磨矿产品细度为-74 μm占75%,以QP-03为铜矿物捕收剂、X为浮铜尾矿中硫的活化剂,采用1粗2精1扫浮铜、1粗1精1扫选硫、中矿顺序返回的优先浮选闭路流程处理该矿石,可以获得铜品位为20.81%、回收率为92.97%、含硫38.81%的铜精矿,以及硫品位为34.37%、回收率为52.49%、含铜0.34%的硫精矿。  相似文献   

6.
粤北某高硫铁难选铜矿石中铜矿物绝大部分为黄铜矿,含硫矿物主要为黄铁矿,其次为磁黄铁矿,脉石矿物主要为石英、正长石、白云母、透闪石、方解石、绿泥石,主要有回收价值的元素为铜、硫。原生硫化铜占总铜的87.60%,次生硫化铜占总铜的11.81%;非磁性硫占总硫的62.02%,磁性硫占总硫的37.62%。为确定该矿石的合理铜、硫回收工艺,进行了选矿试验研究。结果表明,矿石在磨矿细度为-0.074 mm占75%的情况下,采用1粗3精2扫、中矿顺序返回(精选1、扫选1中矿合并再磨后返回)流程浮铜,浮铜尾矿1次弱磁选磁黄铁矿,弱磁选尾矿1粗2扫流程浮选黄铁矿,可获得铜品位为19.89%、铜回收率为82.07%的铜精矿,硫品位为33.18%、硫回收率为29.11%的磁性硫精矿,以及硫品位为43.75%、硫回收率为55.26%的硫精矿,总硫回收率达84.37%,该工艺有效地回收矿石中的铜、硫资源。  相似文献   

7.
广西某高硫铜矿石中滑石等易浮硅质矿物含量高,现场采用弱磁选-浮铜-浮硫工艺流程进行分选,除弱磁选能较好地回收磁黄铁矿外,黄铜矿浮选和黄铁矿浮选均因易浮硅质矿物的干扰而难以获得合格精矿。为此,在大量探索试验的基础上,采用弱磁选-黄铜矿和硅质矿物混合浮选-混浮精矿铜硅摇床分离-混浮尾矿浮黄铁矿的工艺流程处理该矿石,获得了磁选硫精矿硫品位和回收率分别为38.69%和64.48%,浮选硫精矿硫品位和回收率分别为44.57%和30.99%,铜精矿铜品位和回收率分别为13.87%和63.89%的良好试验指标,有效地综合回收了铜、硫矿物。  相似文献   

8.
铜陵有色某矿山为解决铜(含金银)、铁回收后的选硫精矿品质问题,在小型条件试验基础上进行了连选选硫试验。结果表明:①磁选尾矿中金属矿物主要为黄铁矿、磁黄铁矿,黄铁矿、磁黄铁矿的解离度均在90%左右,粒度主要分布在10~60μm;脉石矿物主要是石英,其次为方解石、石榴子石等。②磁黄铁矿可浮性比黄铁矿差,且与易浮脉石矿物可浮性相近,是造成浮选工艺很难获得高品质的硫精矿的原因。根据黄铁矿与磁黄铁矿可浮性差异,以及磁黄铁矿和脉石矿物磁性的差异,采用分步浮选、中矿强磁选、强磁选精矿浮选工艺连选,获得了含硫40.36%、含铁49. 25%,全硫+铁品位为89.61%,硫回收率为66.78%的总硫精矿,该精矿经烧酸之后,硫酸烧渣铁品位可达65%,大大提高了硫酸烧渣的附加值。③产品镜下分析表明,磁选尾矿中主要有用矿物为黄铁矿和磁黄铁矿;硫精矿1中金属矿物以黄铁矿为主;精选1尾矿和精选2尾矿中金属矿物主要是磁黄铁矿;硫精矿2中金属矿物以磁黄铁矿为主。这表明分步浮选、中矿强磁选、强磁选精矿浮选工艺是回收磁选尾矿中黄铁矿和磁黄铁矿的合理工艺。④本次连选试验的尾矿2(即强磁选尾矿)含硫较高,达14.53%,以非磁性磁黄铁矿为主,后续应开展该部分含硫矿物的回收研究。  相似文献   

9.
针对矿石中磁黄铁矿干扰铜浮选、铜矿物嵌布粒度细等问题,采用铜硫混浮-粗精矿再磨工艺处理该矿石,以石灰和亚硫酸钠作为磁黄铁矿的抑制剂,同时采用选择性较高的DY-1为铜矿物捕收剂。闭路试验获得了铜品位为24.49%、含银335.37g/t,铜回收率为89.15%、银回收率为65.33%的铜精矿。  相似文献   

10.
某难选铜锌硫化矿含锌4.88%,含铜0.36%,含硫24.16%,该矿石锌矿物为铁闪锌矿,磁黄铁矿含量高,铁闪锌矿难浮且与磁黄铁矿可浮性相近,分离难度较大。通过四种选矿流程方案的对比试验,采用磁选脱磁黄铁矿-锌浮选流程,获得了含锌42.31%,含铜0.096%,锌回收率85.52%的锌精矿,浮选指标和经济性均较好,在此基础上,增加锌精矿磁选-磁选粗精矿再磨再选流程,可获得高品位锌精矿,锌品位48.04%、锌回收率83.38%,实现锌矿物更有效的回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号