首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
质子交换膜燃料电池数学模型评述   总被引:6,自引:1,他引:5  
比较和分析了不同的质子交换膜燃料电池数学模型,指出了各自优缺点。其主要结论是高电流密度时,膜电阻是主要的过电位损失;当采用空气为氧化剂时,质量传递阻力是电池性能的重要限制因素;电池伏-安曲线偏离线性区的原因是扩散层被水淹;水在膜内传递主要是电迁移和扩散,二种相反作用的结果使膜中净水传递为0.2(H2O/H+)左右;为了防止高电流密度时,膜阳极侧失水,使膜电阻增大,必须对阳极反应气进行增湿,空气做氧化剂时,阴极亦应适当增湿;排热对水管理有重要影响,必须同时考虑水平衡和热平衡。  相似文献   

2.
质子交换膜燃料电池阴极数学模型   总被引:9,自引:2,他引:9  
Stefan-Maxwell方程用于氧在扩散层内传递;稳态连续方程和Fick 第一定律分别用于氧在催化层内气体通道和电解质膜中传递,采用一维宏观均匀模型,建立了质子交换膜燃料电池氧电极的数学模型。给出了反应速度和氧气浓度在催化层内分布,并分析了各种参数对氧电极性能的影响。结果表明:(1)当催化层内气相孔隙率为0.01以上,则氧在催化层内浓度分布就趋于均匀;(2)催化层厚度为25 μm 左右最佳,过厚影响传质,过薄不能提供足够的反应界面;(3)提高催化层内质子电导和催化剂的有效表面积将极大地提高电极性能;(4)低电流密度时,反应在催化层内分布均匀;高电流密度时,反应集中在催化层靠近扩散层一则。  相似文献   

3.
质子交换膜燃料电池发展现状   总被引:2,自引:0,他引:2  
介绍了质子交换膜燃料电池(PEMFC)的结构、组成和工作原理,叙述了不同质子交换膜的来源特点及导电性与膜参数的关系;对不同电极和电极催化剂性能作了评述;综述了目前几种氢的来源、优缺点及质子交换膜燃料电池有关问题的发展动向和前景。  相似文献   

4.
徐炽焕 《电池工业》2005,10(4):236-239
质子交换膜燃料电池(PEMFC)因其诸多优点而成为各国竞相研发的重点。概述了日本国内为促进PEMFC的实用化及普及化,政府及产业界、学校所做的一系列研发推动工作;介绍了日本在PEMFC方面的有关研究课题。  相似文献   

5.
张东方  潘牧  罗志平 《电池工业》2003,8(4):180-184
介绍了质子交换膜燃料电池的核心组成与工作原理,对燃料电池的膜材料和电催化剂、膜电极技术的发展现状以及对膜电极的制作工艺和结构优化进行了评述和分析,指出了目前质子交换膜燃料电池研究存在的问题及发展趋势。  相似文献   

6.
任学佑 《电池》2004,34(6):455-456
论述了单体质子交换膜燃料电池(PEMFC)的技术现状.介绍了国内外PEMFC的研究进展,趋于成熟的贮氢技术,以及未来展望.  相似文献   

7.
常压空气质子交换膜燃料电池   总被引:1,自引:0,他引:1  
常压空气质子交换膜燃料电池,采用阴极与阳极均为平行沟槽流场的石墨双极板。MEA采用DuPond公司制造的Nafion112质子交换膜、碳纸采用SGL碳纸,碳载铂为自制催化剂。电池堆的工作条件为室温,氢气压力为0.01~0.02MPa,以空气为氧化剂。电池堆输出功率为200W,峰值功率400W。  相似文献   

8.
质子交换膜燃料电池系统开发及应用进展   总被引:9,自引:0,他引:9  
本文简要叙述了质子交换膜燃料电池发电机理,列举了系统开发工作中所面临的富氢燃料转换,氢气安全贮存与稳定供给等若干课题。文章重点介绍了目前国外质子交换膜燃料电池系统开发及应用进展情况。  相似文献   

9.
针对当前燃料电池用复合质子交换膜的研究进展,重点介绍了适用于不同条件和环境下的增强型、高温型、阻醇型等各种功能型复合质子交换膜的研究现状,从制备工艺、物化性能、应用前景比较了各种复合膜的优缺点,提出了今后复合质子交换膜研究的方向。  相似文献   

10.
质子交换膜燃料电池是目前研究的热点之一,研究方向包括提高燃料电池效率、减少成本、提高耐久性等。作为质子交换膜燃料电池的核心部件,质子交换膜性能的好坏直接影响燃料电池的性能与寿命。文中首先概述了燃料电池质子交换膜的工作原理。随后,总结了燃料电池质子交换膜的分类,主要分为全氟磺酸质子交换膜、部分氟化聚合物质子交换膜、复合质子交换膜以及非氟化聚合物质子交换膜四大类,同时还简述了质子交换膜的制备工艺。最后,介绍了燃料电池质子交换膜的优化方案,主要包括有机/无机纳米复合质子交换膜、改进质子交换膜的骨架材料、调整质子交换膜的内部结构、机械增强型质子交换膜以及自增湿型质子交换膜。  相似文献   

11.
研制了一种小型六单体串联自呼吸式质子交换膜燃料电池(PEMFC),阳极采用串联供氢,阴极采用自呼吸式供空气.在300 mA、500 mA下长时间工作时,PEMFC的性能稳定,各单体电池的工作电压较均一.  相似文献   

12.
为了进行电池控制设计而为电池输出电压建立模型。在分析大量文献的机理模型和经验模型的基础上,将机理和经验两种建模方法良好结合,重点是改进电池膜阻抗部分的模型,目的是使得到的PEMFC电压模型因为基于机理基础而具有灵活的有效性,同时又有经验的形式而具有适合控制的简单性。多组PEMFC实验数据的验证表明,提出的膜阻抗模型能够在电流密度为0~0.9A/cm的范围内准确预测各种Nafion117膜的阻抗,电压模型能够在很大的电流密度范围内,适用于具有不同反应面积和不同特点Nafion膜的PEM燃料电池,因此是PEM燃料电池发电系统仿真和设计分析的一个很有用的工具。  相似文献   

13.
建立了质子交换膜燃料电池(PEMFC)和膜增湿器一维性能分析模型,模拟了空气流量、压力和温度等条件对PEM FC及膜增湿器性能的影响,模拟结果与实验数据吻合良好.根据模型对PEMFC膜增湿系统的非稳态性能进行了预测.空气进气温度的动态响应特性对膜内水含量梯度的影响显著,对膜内水的扩散系数几乎无影响.  相似文献   

14.
质子交换膜燃料电池的热源分析   总被引:1,自引:0,他引:1  
薛坤  肖金生  朱蓉文  潘牧  袁润章 《电池》2006,36(4):255-256
根据伏安曲线分析了质子交换膜燃料电池(PEMFC)的电极热源项和能量损耗比例。研究了PEMFC的电极过程特性以及对电池能量转化效率和热源的影响。在标准状态下,电池以0.60 V的电压工作时,实际能量效率为40.5%。  相似文献   

15.
宋鹏  刘长宏  孙炎辉 《电池工业》2009,14(6):382-385
研究了5 kW质子交换膜燃料电池(PEMFC)的数学模型,给出的模型简单有效,物理意义明确。在此基础上,根据电池参数,利用MATLAB/SIMULINK建立电池的仿真模型,并对其动静态特性进行研究。仿真结果与实际系统相符,说明所建立的模型正确有效,可以用于燃料电池及其控制系统的研究。  相似文献   

16.
申强  范丽 《电池》2014,44(4)
从专利角度分析质子交换膜燃料电池(PEMFC)动态特性的研究进展,对国内外相关专利进行检索,分析全球范围的申请趋势、申请人分布、专利技术的类型分布及技术热点,为PEMFC动态特性的研究和中国申请人专利布局的实施提供参考。  相似文献   

17.
PEMFC阴极排水的研究   总被引:3,自引:3,他引:0  
马海鹏  张华民  胡军  才英华  衣宝廉 《电池》2006,36(4):249-251
采用可视化方法研究了直条单流道质子交换膜燃料电池(PEMFC)阴极排水过程。通过分析流道首次液态排水时间和平均液态排水间隔时间的变化,研究了电流密度、增湿温度和气体流速等对阴极排水过程的影响。阴极气体非饱和增湿时,生成水以水蒸气和液态水两种方式排出,水蒸气排水为连续过程,液态排水为间歇过程。随着电流密度和相对湿度的提高,液态水的积累速度增加;随着气体流速的增大,生成的水以水蒸气方式排出的比例增大。  相似文献   

18.
余意 《电池》2015,45(2):74-77
以活性面积为330 cm2的电堆为研究对象,考察质子交换膜燃料电池(PEMFC)经历频繁启停操作后的性能衰减。反应气体的分布不均匀,会造成单片电池电压在氮气吹扫过程中下降速率不一致,甚至出现某一片或者几片电池出现反极的现象;PEMFC电堆在经历频繁的启停循环后,性能下降,且高电流密度区的电压衰减更快;随着启停循环的增多,性能的下降会变慢。当电流为100 A时,经历500次启停循环后,前200次启停循环的平均电压衰减速率为后300次衰减速率的3倍,而电堆中单片电池的均一性并未明显恶化。  相似文献   

19.
王芳  唐浩林  潘牧  袁润章 《电池》2007,37(1):64-66
对质子交换膜燃料电池膜电极材料的退化行为、降解机理和影响因素进行了综述,认为膜的退化主要原因是:高分子的分解导致膜的电导率下降和膜出现小孔对反应原料渗透.催化层的退化,是由C载体的腐蚀和Pt的电迁移所致.  相似文献   

20.
介绍了5 kW高低温质子交换膜燃料电池混合动力系统测控平台的开发。介绍了平台测试系统模式下检测系统工作参数,对燃料电池混合动力系统的性能、建模和优化设计等问题进行研究;在模拟真实系统模式下研究燃料电池混合独立发电系统的动态建模、控制和优化。阐述了配合多能源系统研究动态负载下的进料控制、功率输出稳定性和能量效率优化等问题。介绍了测控平台各子系统的设计和设备选型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号