首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
毛兰  周文斌  胡学功  何雨  张桂英  单龙 《化工进展》2019,38(9):4164-4173
利用氧化石墨烯(GO)纳米片沸腾自组装法(self-assembly)制备出GO纳米表面,以蒸馏水为液体工质,对常压下GO纳米表面和光滑铜平面的饱和池沸腾换热特性进行了对比实验研究,并用高速摄像机拍摄了汽泡的动态行为。结果表明,GO纳米表面降低了换热壁面的过热度,其临界热流密度(CHF)和换热系数(HTC)分别达到了208W/cm2和7.25W/(cm2?K),较光滑铜平面分别提高了66.4%和86.9%。分析认为,是铜基底表面沉积的润湿性优异的高导热二维GO层状结构促使了CHF提高。汽泡可视化观察发现,相比于光滑铜平面,较低热流密度时,相同热流下GO纳米表面上汽泡脱离直径较小,脱离频率较高,汽化核心增多;较高热流密度时,光滑铜平面汽泡合并现象更严重,即GO纳米表面能延缓导致CHF产生的表面蒸汽膜的出现。  相似文献   

2.
对大气压下纳米流体在竖直细小圆管内自然对流沸腾特性和临界热通量(CHF)进行了试验研究.工质使用了水和水-氧化铜的纳米流体.试验中加热管长L=200~500 mm,管径d =2.1~5.4 mm和纳米流体浓度=0.1~1.0 %(wt).试验主要研究了不同浓度的纳米流体对CHF的影响.试验结果表明:相对于纯水而言,随着纳米浓度的增加,纳米流体的沸腾特性有所劣化,这主要是因为纳米颗粒在传热面上形成吸附层降低了传热表面的粗糙度,减少了表面活性核化密度,增加了传热面热阻,因此降低了传热能力.随着纳米浓度的增加,纳米流体的临界热通量也随之增加.纳米流体的临界热通量不仅与管长与管径比有关,而且还与纳米浓度有关;氧化铜颗粒质量浓度为1 %(wt)的纳米流体的CHF比纯水的增加了30%以上.  相似文献   

3.
为探究纳米流体池内沸腾换热特性及其影响因素,利用"两步法"制备了体积分数为0.001%—0.1%的Al_2O_3/H_2O、CuO/H_2O纳米流体以及CuO-Al_2O_3/H_2O混合颗粒纳米流体,并进行池内沸腾换热实验。结果表明:测试的体积分数范围内,纳米流体沸腾换热系数随体积分数的增大而增大,起始沸腾过热度随体积分数的增大而降低,纳米流体的传热强化率随热流密度的增大而减小。实验中,混合纳米流体的传热性能始终优于去离子水和单一颗粒的纳米流体,Al_2O_3、CuO及两者的混合纳米流体沸腾传热系数增强率最高分别达到178.2%,213.2%和253.2%。纳米颗粒的加入对沸腾传热有强化和恶化两方面的作用,在实验的不同阶段,传热效果好坏是热导率、颗粒沉积等共同作用的结果。  相似文献   

4.
随着电子设备热负荷的逐渐增加,纳米流体沸腾传热作为一种新型强化换热方式,受到越来越多的关注。本文主要综述了近年来关于纳米流体沸腾传热临界热流密度(CHF)的相关研究,并聚焦Al_2O_3纳米流体,归纳了各种因素对沸腾传热CHF的影响,分析了它们强化或弱化CHF的原因,得到了它们对CHF影响的一般规律。结果表明:纳米颗粒的添加可以有效提升CHF;随着纳米颗粒浓度的升高,CHF的变化存在增大、先增大后基本不变、先增大后降低等情形;微通道能够有效提升CHF,但通道尺寸较小时,CHF随尺寸的增大而增大;加热壁面越光滑CHF越低。此外,还概述了壁面倾斜角、壁面润湿性、工作压力以及外场(电场、磁场、重力场、超声波)等因素对CHF的影响。最后,指明了纳米流体沸腾传热CHF的发展方向并展望了其在机载环境下的应用前景。  相似文献   

5.
水基SiO2纳米流体沸腾换热特性   总被引:1,自引:0,他引:1  
薛淑文  李雨晴  肖卓楠  王亚雄  李科 《化工学报》2017,68(11):4147-4153
纳米流体作为新型换热介质可广泛应用于多个领域。现有研究结果表明导致纳米流体沸腾换热性能变化的因素主要在于纳米颗粒在换热表面的沉积、加热表面粗糙度、表面张力、内部能量传递、气泡形成条件等。对水基SiO2纳米流体进行池沸腾实验研究,得到SiO2/水纳米流体与纯基液-去离子水核态沸腾换热特性的区别,比较不同颗粒粒径对纳米流体换热特性影响。结果表明:对于低浓度纳米流体,添加纳米颗粒后流体的换热特性与纯基液在相同条件下进行核态沸腾时的换热特性有较大差异,不同粒径之间换热特性变化明显,随着粒径的增加呈非线性增长趋势,随着热通量增大纳米颗粒粒径对换热特性的影响趋势增大。  相似文献   

6.
纳米流体作为新型换热介质可广泛应用于多个领域。现有研究结果表明导致纳米流体沸腾换热性能变化的因素主要在于纳米颗粒在换热表面的沉积、加热表面粗糙度、表面张力、内部能量传递、气泡形成条件等。对水基SiO_2纳米流体进行池沸腾实验研究,得到SiO_2/水纳米流体与纯基液-去离子水核态沸腾换热特性的区别,比较不同颗粒粒径对纳米流体换热特性影响。结果表明:对于低浓度纳米流体,添加纳米颗粒后流体的换热特性与纯基液在相同条件下进行核态沸腾时的换热特性有较大差异,不同粒径之间换热特性变化明显,随着粒径的增加呈非线性增长趋势,随着热通量增大纳米颗粒粒径对换热特性的影响趋势增大。  相似文献   

7.
表面改性是提高沸腾换热性能的重要手段。本文以自主开发的微结构表面为基础,简述了近三年来常重力条件下的微/纳结构表面强化池沸腾换热、临界热流密度预测模型及经验关联、微重力条件下(重力水平为10-2~10-3 g 0g 0=9.8m/s2)加热面尺寸对沸腾换热的影响和气泡动力学等方面的研究进展。对柱状微结构参数和排布方式进行优化后的多尺度复合微结构表面相比柱状微结构表面和光滑表面,其壁面温度可分别降低8K和30K以上,而临界热流密度(CHF)则分别提高了28%和119%以上。体积分数为0.02%的乙醇/银纳米流体相对于单纯的乙醇工质,相同条件下换热壁面温度可降低8~15K,而机械作用对CHF约有25%的提高。通过对柱状微结构的几何参数以及临界发生时的供液机理研究,建立了考虑柱状微结构参数的CHF关联式、微/纳结构表面考虑液体毛细芯吸作用的CHF预测模型以及考虑液体铺展速度的CHF预测关联式。根据微重力下加热面尺寸对沸腾的影响的研究,提出了基于恒定热流密度的换热预测关联式。考虑微重力条件下主气泡和小气泡的表面张力,对传统的气泡脱离直径预测的力平衡模型进行了改进,进一步提高了微重力下气泡的脱离半径的预测精度。此外,对近年来以FC-72为工质的其他强化池沸腾换热微结构表面的研究成果进行了总结,并与自主研发的微结构表面换热性能进行了对比与分析,为今后的研究方向和应用指出了方向。  相似文献   

8.
在真空再生沸腾特性测试实验台上,对水和质量分数为30%—34%的LiCl溶液在压力为4—10 kPa条件下进行实验研究,得到了LiCl溶液的沸点、沸腾热流密度和沸腾表面传热系数在不同压力下的变化曲线,分析了真空条件下,再生压力的变化对LiCl溶液沸腾特性的影响。结果表明:随着压力的增大,溶液的沸点升高;对于同一种质量分数的溶液,压力越高,溶液的表面传热系数越大,而压力的变化对溶液的沸腾热流密度系数影响不大;沸腾温差越大,溶液的沸腾热流密度和表面传热系数越大,再生效率越高。  相似文献   

9.
分别以去离子水和质量分数为0.3%的Al2O3-H2O纳米流体为实验工质,在水力直径为1.24mm的矩形微细通道内进行饱和流动沸腾传热实验研究。首先运用酸性抛光技术对矩形微细通道的壁面粗糙度进行处理,再采用SFS法获得壁面粗糙度的显微图像,然后借助MATLAB对图像进行灰度化处理,从而获得粗糙度分别为25.3、38.7、51.2的3种实验矩形微细通道。对比研究了去离子水和0.3%Al2O3-H2O(质量分数)纳米流体在饱和流动沸腾传热过程中不同壁面粗糙度对临界热流密度(CHF)和纳米流体流动不稳定性的影响。研究结果表明:相同工况下,0.3%Al2O3-H2O纳米流体的CHF比去离子水可提高18.37%~226.28%;随着壁面粗糙度的增大,两种工质的CHF均略有增大,但相比去离子水,0.3%Al2O3-H2O纳米流体CHF随壁面粗糙度增大而增大的趋势更为明显;通过对大量实验数据综合评估分析,发现微细通道壁面粗糙度的增大会使微细通道内流体流动的不稳定性增大。  相似文献   

10.
对δ-Al2O3-R141b纳米流体在0.1 MPa系统压力下进行了池内沸腾传热性能测试。沸腾表面为2000#砂纸打磨的光滑紫铜表面,沸腾热通量为30~130 kW·m-2,纳米流体的体积浓度为0.1%、0.01%、0.001%。实验表明纳米流体强化了沸腾传热特性,且强化倍数随着纳米流体浓度的增加而增大。体积浓度为0.1%时,沸腾传热系数比基液增大了50.2%。分析认为表面颗粒沉积是强化换热的主要因素,而接触角的变化在此可以忽略。与Rohsenow关联式相比较,纯液体和较低浓度的纳米流体的实验数据与关联式吻合较好,相对误差最大不超过13%,高浓度时吻合较差关联式不再适用。  相似文献   

11.
对CeO2纳米流体进行了池沸腾传热特性研究,考察了CeO2/水基纳米流体的热导率,静态接触角以及沸腾后表面沉积情况对沸腾传热的影响。结果表明,CeO2纳米流体可提高沸腾传热系数,且纳米流体最佳质量分数为0.05%,其沸腾传热系数较去离子水提高36%。热导率以及接触角随纳米流体质量分数的增加而增加,在本实验范围内,热导率最大增加1%;而纳米流体接触角从50.5°增加到92.9°;表面沉积随纳米流体的质量分数增加越来越明显,去离子水在沉积表面的接触角发生较大变化(51.4°~134.4°)。纳米流体的热导率影响可忽略不计;而接触角和沸腾表面颗粒沉积对纳米流体的强化传热作用影响较大。  相似文献   

12.
测试了水基石墨烯纳米流体的部分热物性,研究了不同浓度、雷诺数(Re)和加热功率条件下水基石墨烯纳米流体作为换热工质在设计的矩形结构小槽道内的对流换热性能。结果表明,层流状态(Re=500~2000)下,矩形槽道壁面温度随Re增大逐渐降低,随加热功率增大逐渐升高,与常规流体换热特性一致;在相同Re和换热功率条件下,随纳米流体浓度增大,壁温逐渐减小;水基石墨烯纳米流体的换热强度比基液去离子水提升较大,Re=2000、加热功率为210 W时,浓度为0.03wt%的水基石墨烯纳米流体的平均努塞尔数(Nu)为9.3,比基液水提升48.8%;受入口效应影响,沿槽道长度局部对流换热系数逐渐减小,最高可达25674.5 [W/(m2?℃)],较基液水最大可提高39.1%;Re=500~1400时,石墨烯纳米流体的流动换热强度随Re增大明显增强;由实验数据结合理论模型拟合了适用于石墨烯纳米流体对流换热强度的计算式,计算结果与实验结果最大相对误差不超过25%,平均相对误差仅为4.8%。  相似文献   

13.
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.  相似文献   

14.
Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density.  相似文献   

15.
向多壁碳纳米管引入羟基基团,改善了其在制冷剂R141b中的分散性和稳定性。同时研究了不同质量分数纳米流体热导率、表面颗粒沉积、接触角变化对核沸腾传热性能的影响。结果表明:羟基化碳纳米流体强化沸腾传热,强化率随质量分数的增加而增加,沸腾后期有所下降。在测试浓度范围内,质量分数为0.05%,热通量为87.4 kW·m-2时,强化率达到最大168%。流体的热导率随着质量分数的增加而增大,质量分数为0.10%时其热导率是纯R141b的1.18倍。分析认为:纳米流体热导率的增加、表面沉积颗粒及纳米颗粒扰动是强化传热的主要影响因素,接触角变化的影响可忽略不计。结论由质量分数为0.03%纳米流体沸腾过程高速成像得到验证。  相似文献   

16.
祝啸  陈威  李林星 《化工进展》2016,35(8):2381-2386
对CuO-水纳米流体在6mm多孔球层内进行池沸腾实验研究。实验使用了40nm的CuO纳米颗粒,加以不同浓度的十二烷基苯磺酸钠(SDBS)作为表面活性剂,配成多种不同配比关系的纳米流体。实验结果表明,当表面活性剂浓度与纳米颗粒浓度在0.01%~0.03%(质量分数,下同)之间变化时,两者浓度相近的纳米流体稳定性较好,沸腾传热效果高。其中表面活性剂浓度略高于CuO浓度时,传热效果较好,在SDBS浓度为0.03%、CuO浓度为0.02%时达到最大,为41670W/(m2·K);而纳米颗粒浓度增大时,根据其对纳米流体的稳定性和沉降效应的影响,在不同程度上可增强或削弱沸腾传热。同时对纳米流体的池沸腾进行可视化研究,利用气泡脱离特性对实验结果作了诠释。所得结果可为纳米流体在多孔球层的池沸腾传热特性研究提供有益的研究数据。  相似文献   

17.
通过络合-沉淀法合成氧化铜纳米颗粒,制备铜颗粒的直径在40~100 nm,晶型为正六面体。利用“两步法”制备水基氧化铜纳米流体。考察了不同质量分数纳米流体的热导率、接触角变化和加热表面颗粒沉积对核沸腾传热性能的影响,并利用可视化记录沸腾过程气泡行为。结果表明:在测试质量分数范围内,传热系数随热通量增加而增大,当质量分数达到0.1%时,强化率最大为146.1%。经过分析可知纳米流体的接触角度、热导率、颗粒沉积以及颗粒扰动对水基氧化铜纳米流体强化传热作用均有影响。通过高速摄像采集质量分数0.07%纳米流体沸腾过程验证结论的可靠性。并对纳米流体核沸腾传热过程建立气泡动力学经验模型,模型计算结果与实测值相对偏差在±10%以内。  相似文献   

18.
水-铜纳米流体强化小型毛细泵回路换热特性   总被引:1,自引:1,他引:0       下载免费PDF全文
吕伦春  刘振华 《化工学报》2008,59(11):2713-2717
在稳定的低压条件下,对以水-Cu纳米流体为工质的小型平板式毛细泵回路(CPL)的换热特性进行了实验研究。实验中纳米颗粒的平均粒径为20 nm,纳米流体质量分数为0.2%~2.0%。工作压力为5.62、9.58、15.74 kPa。研究了纳米颗粒质量分数和运行压力对CPL换热性能、最大热通量和热阻的影响。实验结果表明,水-Cu纳米流体替代纯水能够显著提高CPL的换热性能,蒸发器的传热系数最大可提高40%,最大热通量提高18%。存在着一个对应于最大强化换热能力的最佳质量分数,在实验压力范围内最佳纳米颗粒质量分数为1.0%。水-Cu纳米流体是一种适合在CPL中使用的强化传热工质。运行压力对CPL换热特性也有明显影响,压力越高,CPL换热的强化效果越显著。  相似文献   

19.
碳纳米管悬浮液强化小型重力型热管换热特性   总被引:4,自引:2,他引:2  
郭广亮  刘振华 《化工学报》2007,58(12):3006-3010
对水基多壁碳纳米管悬浮液强化小型重力型热管换热特性进行了实验研究。碳纳米管悬浮液质量分数为0. 1%~3%,热管运行压力为7. 45、12. 38和19. 97 kPa。实验结果发现,用质量分数为2. 0%的碳纳米管悬浮液替代去离子水后,热管蒸发段换热性能大幅度提高,临界热通量最大提高了120%。热管运行压力对蒸发段沸腾传热系数有明显影响,压力越小,碳纳米管悬浮液对沸腾换热特性的强化作用越显著。壁面热通量对蒸发段沸腾换热特性也有明显影响,低热通量时碳纳米管悬浮液的强化换热作用不明显,到高热通量时,其强化换热作用显著。  相似文献   

20.
氨水-纳米炭黑纳米流体的稳定性   总被引:4,自引:1,他引:3       下载免费PDF全文
程波  杜垲  张小松  牛晓峰 《化工学报》2008,59(Z2):49-52
随着纳米材料科学的迅速发展,越来越多的研究表明纳米颗粒不仅能强化传热,同时也能强化吸收。本文提出了在氨水溶液中添加碳纳米颗粒和表面活性剂辛基苯酚聚氧乙烯醚(OP-10)的配制纳米流体的方法,并对其稳定性进行了一定的实验研究。根据吸附理论讨论了活性剂对纳米炭黑颗粒在氨水溶液中的分散机理,在此基础上,探讨了一定纳米颗粒浓度所对应的最小的活性剂浓度,以及表面活性剂浓度对纳米颗粒悬浮液稳定性的影响。以便为氨水纳米流体的强化吸收研究作基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号