首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The pollen diet provided by adult bees to their offspring varies immensely. While some species collect pollen on several plants irrespective of their phylogenetic relatedness (polyleges), others collect only on plants within a genus or family (oligoleges). Floral scents play a central role in bee-plant interactions. To locate flowers, polyleges are assumed to rely on compounds commonly found as floral scent constituents, whereas oligoleges rely on unusual compounds to recognize host flowers unambiguously. Campanula flowers are visited by both polylectic and oligolectic species, and their scent bouquets consist of common and unusual (e.g., spiroacetals) volatiles. In a comparative approach, we performed electroantennographic analyses to investigate the antennal responses of three polyleges and three oligoleges to three common volatiles and four spiroacetals. We hypothesized that: 1) oligoleges and polyleges should respond similarly to common flower volatiles, and 2) Campanula oligoleges should be more sensitive to spiroacetals than are polyleges. In corroboration, we found that antennal sensitivity to common volatiles was similar among bees irrespective of pollen diet, whereas oligoleges of Campanula were more sensitive to spiroacetals than polyleges. Newly emerged bees of the Campanula oligolege Chelostoma rapunculi rely on spiroacetals for recognizing host-flowers, and our results suggest that this might also be true for other Campanula oligoleges, since Chelostoma campanularum and Hoplitis mitis also were able to perceive these specific volatiles at very low concentrations. Together, our results provide interesting insights into the significance of olfactory adaptations in oligolectic and polylectic bee species.  相似文献   

2.
Parasitoids often use complex cues to identify suitable hosts in their environment. Phorid fly parasitoids that develop on one or a few host species often use multiple cues, ranging from general to highly specific, to home in on an appropriate host. Here, we describe the hierarchy of cues that Pseudacteon phorid flies use to identify Azteca ant hosts. We show, through behavioral observations in the field, that phorid flies are attracted to two cryptic Azteca species, but only attack Azteca sericeasur (Hymenoptera: Formicidae: Dolichoderinae). To test whether the phorid flies use cuticular hydrocarbons (CHCs) to distinguish between the two Azteca taxa, we first documented and compared cuticular hydrocarbons of the two Azteca taxa using gas chromatography/mass spectrometry. Then, using cuticular hydrocarbon-transfer experiments with live ants, we characterized the cuticular hydrocarbons of A. sericeasur as a short-range, host location cue used by P. lasciniosus (Diptera: Phoridae) to locate the ants.  相似文献   

3.
Floral scents attract pollinators to plant rewards; in nectarless flowers, pollen grains are the only reward. Thus, pollen not only fertilizes ovules, but also feeds pollinators. This dilemma is resolved by specialization of anthers (i.e., heteranthery): feeding anthers that feed pollinators and pollinating anthers for fertilization. We hypothesized that the chemical composition of floral volatiles differs between the two types of anther and influences pollination preference for feeding anthers. We used Solanum rostratum as a study model because its heterantherous flowers produce a floral scent that suggests a close association with their pollinators. The main aim of this study was to determine the chemical composition of the two types of anther and to investigate how they influence foraging behaviour of pollinators. To characterize this composition, we used solid phase microextraction and hexane extraction followed by gas chromatography-mass spectrometry. We registered 12 volatile compounds in S. rostratum floral extracts, mainly aromatic and sesquiterpene compounds. The proportion of these compounds differed between feeding and pollinating anthers. Some of these compounds were probably emitted by osmophores located in both anther types. Also, we used electroantennography to investigate Melipona solani antennal response to floral volatiles. The M. solani antennae are receptive to the highest floral extract dose tested. Finally, we conducted two behavioural bioassays to test bee attraction for each type of floral extract: a) multiple-choice in a feeding arena using M. solani and b) Y-olfactometer bioassay using Bombus impatiens. Both bee species preferred feeding anthers in bioassays. In conclusion, heteranthery involves chemical differentiation (i.e., proportion of volatiles compounds) in anther specialization that influences bee preference for feeding anthers over pollinating anthers.  相似文献   

4.
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.  相似文献   

5.
Many parasitic nematodes have an environmental infective stage that searches for hosts. Olfaction plays an important role in this process, with nematodes navigating their environment using host-emitted and environmental olfactory cues. The interactions between parasitic nematodes and their hosts are also influenced by the olfactory behaviors of the host, since host olfactory preferences drive behaviors that may facilitate or impede parasitic infection. However, how olfaction shapes parasite-host interactions is poorly understood. Here we investigated this question using the insect-parasitic nematode Howardula aoronymphium and its host, the mushroom fly Drosophila falleni. We found that both H. aoronymphium and D. falleni are attracted to mushroom odor and a subset of mushroom-derived odorants, but they have divergent olfactory preferences that are tuned to different mushroom odorants despite their shared mushroom environment. H. aoronymphium and D. falleni respond more narrowly to odorants than Caenorhabditis elegans and Drosophila melanogaster, consistent with their more specialized niches. Infection of D. falleni with H. aoronymphium alters its olfactory preferences, rendering it more narrowly tuned to mushroom odor. Our results establish H. aoronymphium-D. falleni as a model system for studying olfaction in the context of parasite-host interactions.  相似文献   

6.
The Afro-tropical scarab Oplostomus haroldi (Witte) is a pest of honeybees in East Africa with little information available on its chemical ecology. Recently, we identified a female-produced contact sex pheromone, (Z)-9-pentacosene, from the cuticular lipids that attracted males. Here, we investigated the kairomonal basis of host location in O. haroldi. We used coupled gas chromatography/electroantennographic detection (GC/EAD) and GC/mass spectrometry to identify antennally-active compounds from volatiles collected from honeybee colonies. Antennae of both sexes of the beetle consistently detected seven components, which were identified as 3-hydroxy-2-butanone, 2,3-butanediol, butyl acetate, isopentyl acetate, butyl butyrate, hexyl acetate, and methyl benzoate. In olfactometer bioassays, both sexes responded to the full seven-component synthetic blend over solvent controls, but chose honeybee colony odors over the blend. These findings suggest that the seven compounds are components of a kairomone from honeybee colonies used by O. haroldi.  相似文献   

7.
Volatiles emitted from unpollinated in situ flowers were collected from two male cultivars, ‘M33’, ‘M91’, and one female cultivar ‘Zesy002’ (Gold3) of kiwifruit (Actinidia chinensis var. chinensis). The samples were found to contain 48 compounds across the three cultivars with terpenes and straight chain alkenes dominating the headspace. Electrophysiological responses of honey bees (Apis mellifera) and bumble bees (Bombus terrestris) to the headspace of the kiwifruit flowers were recorded. Honey bees consistently responded to 11 floral volatiles from Gold3 pistillate flowers while bumble bees consistently responded to only five compounds from the pistillate flowers. Nonanal, 2-phenylethanol, 4-oxoisophorone and (3E,6E)-α-farnesene from pistillate flowers elicited responses from both bee species. Overall, honey bees were more sensitive to the straight chain hydrocarbons of the kiwifruit flowers than the bumble bees, which represented one of the main differences between the responses of the two bee species. The floral volatiles from staminate flowers of the male cultivars ‘M33’ and ‘M91’ varied greatly from those of the pistillate flowers of the female cultivar Gold3, with most of the bee active compounds significantly different from those in the Gold3 flower headspace. The total floral emissions of ‘M33’ flowers were significantly less than those of the Gold3 flowers, while the total floral emissions of the ‘M91’ flowers were significantly greater than those of the Gold3 flowers.  相似文献   

8.
Halyomorpha halys (Stål) (Pentatomidae), called the brown marmorated stink bug (BMSB), is a newly invasive species in the eastern USA that is rapidly spreading from the original point of establishment in Allentown, PA. In its native range, the BMSB is reportedly attracted to methyl (E,E,Z)-2,4,6-decatrienoate, the male-produced pheromone of another pentatomid common in eastern Asia, Plautia stali Scott. In North America, Thyanta spp. are the only pentatomids known to produce methyl 2,4,6-decatrienoate [the (E,Z,Z)-isomer] as part of their pheromones. Methyl 2,4,6-decatrienoates were field-tested in Maryland to monitor the spread of the BMSB and to explore the possibility that Thyanta spp. are an alternate host for parasitic tachinid flies that use stink bug pheromones as host-finding kairomones. Here we report the first captures of adult and nymph BMSBs in traps baited with methyl (E,E,Z)-2,4,6-decatrienoate in central Maryland and present data verifying that the tachinid, Euclytia flava (Townsend), exploits methyl (E,Z,Z)-2,4,6-decatrienoate as a kairomone. We also report the unexpected finding that various isomers of methyl 2,4,6-decatrienoate attract Acrosternum hilare (Say), although this bug apparently does not produce methyl decatrienoates. Other stink bugs and tachinids native to North America were also attracted to methyl 2,4,6-decatrienoates. These data indicate there are Heteroptera in North America in addition to Thyanta spp. that probably use methyl 2,4,6-decatrienoates as pheromones. The evidence that some pentatomids exploit the pheromones of other true bugs as kairomones to find food or to congregate as a passive defense against tachinid parasitism is discussed.  相似文献   

9.
Plant-feeding insects use visual and olfactory cues (shape, color, plant volatiles) for host location, but the relative importance of different cues and interactions with non-host-plant volatiles in ecosystems of varying plant biodiversity is unclear for most species. We studied invasive bark beetles and wood borers associated with pine trees to characterize interactions among color, host and non-host volatiles, by employing traps that mimic tree trunks. Cross-vane flight intercept traps (black, green, red, white, yellow, clear) and black funnel traps were used with and without attractants (α-pinene + ethanol), repellents (non-host green leaf volatiles, ‘GLV’), and attractant/repellent combinations in four pine forests in New Zealand. We trapped 274,594 Hylurgus ligniperda, 7842 Hylastes ater, and 16,301 Arhopalus ferus. Trap color, attractant, and color × attractant effects were highly significant. Overall, black and red traps had the highest catches, irrespective of the presence of attractants. Alpha-pinene plus ethanol increased trap catch of H. ligniperda 200-fold but only 6-fold for H. ater and 2-fold for A. ferus. Green leaf volatiles had a substantial repellent effect on trap catch of H. ligniperda but less on H. ater and A. ferus. Attack by H. ligniperda was halved when logs were treated with GLV, and a similar effect was observed when logs were placed among broadleaved understory shrubs emitting GLV. Overall, H. ligniperda was most strongly affected by the olfactory cues used, whereas H. ater and A. ferus were more strongly affected by visual cues. Collectively, the results support the semiochemical diversity hypothesis, indicating that non-host plant volatiles from diverse plant communities or artificial dispensers can contribute to resistance against herbivores by partly disrupting host location.  相似文献   

10.
Significant progress has been made in understanding the cues involved in the host and mate seeking behaviors of spotted wing drosophila, Drosophila suzukii (Matsumura). This insect pest has been discovered in many fruit growing regions around the world since 2008. Unlike closely related Drosophila species, D. suzukii attacks fresh fruit and has become a severe pest of soft fruits including strawberry, cherry, blackberry, blueberry, raspberry, and may pose a threat to grapes. Prior to 2008, little was known about the courtship and host-seeking behaviors or chemical ecology of this pest. Since then, researchers have gained a better understanding of D. suzukii attraction to specific odors from fermentation, yeast, fruit, and leaf sources, and the visual cues that elicit long-range attraction. Several compounds have also been identified that elicit aversive behaviors in adult D. suzukii flies. Progress has been made in identifying the constituent compounds from these odor sources that elicit D. suzukii antennal responses in electrophysiological assays. Commercial lures based on food volatiles have been developed to attract D. suzukii using these components and efforts have been made to improve trap designs for monitoring this pest under field conditions. However, current food-based lures and trap technologies are not expected to be specific to D. suzukii and thus capture large numbers of non-target drosophilids. Attractive and aversive compounds are being evaluated for monitoring, mass trapping, and for the development of attract-and-kill and push-pull techniques to manage D. suzukii populations. This review outlines presently available research on the chemical ecology of D. suzukii and discusses areas for future research.  相似文献   

11.
Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C18-fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.  相似文献   

12.
The checkerspot butterfly, Euphydryas anicia (Nymphalidae), specializes on plants containing iridoid glycosides and has the ability to sequester these compounds from its host plants. This study investigated larval preference, performance, and sequestration of iridoid glycosides in a population of E. anicia at Crescent Meadows, Colorado, USA. Although previous studies showed that other populations in Colorado use the host plant, Castilleja integra (Orobanchaceae), we found no evidence for E. anicia ovipositing or feeding on C. integra at Crescent Meadows. Though C. integra and another host plant, Penstemon glaber (Plantaginaceae), occur at Crescent Meadows, the primary host plant used was P. glaber. To determine why C. integra was not being used at the Crescent Meadows site, we first examined the host plant preference of naïve larvae between P. glaber and C. integra. Then we assessed the growth and survivorship of larvae reared on each plant species. Finally, we quantified the iridoid glycoside concentrations of the two plant species and diapausing caterpillars reared on each host plant. Our results showed that E. anicia larvae prefer P. glaber. Also, larvae survive and grow better when reared on P. glaber than on C. integra. Castilleja integra was found to contain two primary iridoid glycosides, macfadienoside and catalpol, and larvae reared on this plant sequestered both compounds; whereas P. glaber contained only catalpol and larvae reared on this species sequestered catalpol. Thus, although larvae are able to use C. integra in the laboratory, the drivers behind the lack of use at the Crescent Meadows site remain unclear.  相似文献   

13.
Antennal Responses to Floral Scents in the Butterfly Heliconius melpomene   总被引:2,自引:0,他引:2  
Floral scent, together with visual floral cues, are important signals to adult butterflies searching for food-rewarding plants. To identify which compounds in a floral scent are more attractive and, thus, of biological importance to foraging butterflies, we applied electrophysiological methods. Antennal responses of male and female adults of the tropical butterfly Heliconius melpomene L. (Lepidoptera: Nymphalidae: Heliconiinae) to individual compounds of natural floral scents and synthetic floral scent mixtures were investigated using gas chromatography–electroantennographic detection (GC-EAD). The natural floral scents included those of two tropical plant species, Lantana camaraL. (Verbenaceae) and Warszewiczia coccinea (Vahl) Kl. (Rubiaceae), and two temperate species, Buddleja davidii Franchet (Loganiaceae) and Cirsium arvense (L.) Scop. (Asteraceae). The two synthetic floral scent mixtures contained many of the compounds found in the natural scents, but all in equal quantities. Compounds both present in relatively high abundance in the floral scents and detected exclusively in the floral parts of the plant, such as linalool, linalool oxide (furanoid) I and II, oxoisophoroneoxide, and phenylacetaldehyde, elicited the strongest antennal responses, suggesting that they may reflect adaptations by the plant to attract butterfly pollinators. However, other compounds also present in high abundance in the floral scent, but detected in the vegetative as well as floral plant parts, either elicited strong antennal responses, such as trans--ocimene and benzaldehyde, or failed to elicit antennal responses, such as the sesquiterpenes -caryophyllene and -humulene from L. camara. The most volatile monoterpene alkenes in the synthetic scent mixtures elicited only low or no responses. Furthermore, the overall antennal responses were stronger in females than in males. The findings suggest that several floral scent volatiles, especially those of exclusively floral origin, are of high biological significance to H. melpomene butterflies. These include compounds of different biosynthetic origins belonging to the benzenoids, monoterpenoids, and irregular terpenoids.  相似文献   

14.
Green lacewings (Chrysopidae) are predators of soft-bodied pest insects and are among the most important biological control agents in crop protection. Chrysopa spp. are of special importance since, unlike most green lacewing species, adults are also predatory. The current study was undertaken in search of Chrysopa formosa compounds with semiochemical activity. Using coupled gas chromatography-electroantennography (GC-EAG), head and thorax extracts of C. formosa elicited EAG responses to a compound subsequently identified by coupled GC/mass spectrometry, microchemistry, chemical synthesis and GC peak enhancement as (Z)-4-tridecene. In field experiments, this compound decreased attraction of adult C. formosa to (1R,4aS,7S,7aR)-nepetalactol and that of Chrysoperla carnea species-complex to a ternary floral lure, with the inhibitory effect found to be dose-dependent. Our results suggest that (Z)-4-tridecene may serve as a general warning signal among multiple green lacewing species. Perspectives for potential practical applications are discussed.  相似文献   

15.
The annual bluegrass weevil (ABW), Listronotus maculicollis Kirby, is an economically important pest of short cut turfgrass. Annual bluegrass, Poa annua L., is the most preferred and suitable host for ABW oviposition, larval survival and development. We investigated the involvement of grass volatiles in ABW host plant preference under laboratory and field conditions. First, ovipositional and feeding preferences of ABW adults were studied in a sensory deprivation experiment. Clear evidence of involvement of olfaction in host recognition by ABW was demonstrated. Poa annua was preferred for oviposition over three bentgrasses, Agrostis spp., but weevils with blocked antennae did not exhibit significant preferences. ABW behavioral responses to volatiles emitted by Agrostis spp. and P. annua were examined in Y-tube olfactometer assays. Poa annua was attractive to ABW females and preferred to Agrostis spp. cultivars in Y-tube assays. Headspace volatiles emitted by P. annua and four cultivars of Agrostis stolonifera L. and two each of A. capillaris L. and A. canina L. were extracted, identified and compared. No P. annua specific volatiles were found, but Agrostis spp. tended to have larger quantities of terpenoids than P. annua. (Z)-3-hexenyl acetate, phenyl ethyl alcohol and their combination were the most attractive compounds to ABW females in laboratory Y-tube assays. The combination of these compounds as a trap bait in field experiments attracted adults during the spring migration, but was ineffective once the adults were on the short-mown turfgrass. Hence, their usefulness for monitoring weevil populations needs further investigation.  相似文献   

16.
Ophrys flowers mimic sex pheromones of attractive females of their pollinators and attract males, which attempt to copulate with the flower and thereby pollinate it. Virgin females and orchid flowers are known to use the same chemical compounds in order to attract males. The composition of the sex pheromone and its floral analogue, however, vary between pollinator genera. Wasp-pollinated Ophrys species attract their pollinators by using polar hydroxy acids, whereas Andrena-pollinated species use a mixture of non-polar hydrocarbons. The phylogeny of Ophrys shows that its evolution was marked by episodes of rapid diversification coinciding with shifts to different pollinator groups: from wasps to Eucera and consequently to Andrena and other bees. To gain further insights, we studied pollinator attraction in O. leochroma in the context of intra- and inter-generic pollinator shifts, radiation, and diversification in the genus Ophrys. Our model species, O. leochroma, is pollinated by Eucera kullenbergi males and lies in the phylogeny between the wasp and Andrena-pollinated species; therefore, it is a remarkable point to understand pollinator shifts. We collected surface extracts of attractive E. kullenbergi females and labellum extracts of O. leochroma and analyzed them by using gas chromatography with electroantennographic detection (GC-EAD) and gas chromatography coupled with mass spectrometry (GC-MS). We also performed field bioassays. Our results show that O. leochroma mimics the sex pheromone of its pollinator’s female by using aldehydes, alcohols, fatty acids, and non-polar compounds (hydrocarbons). Therefore, in terms of the chemistry of pollinator attraction, Eucera-pollinated Ophrys species might represent an intermediate stage between wasp- and Andrena-pollinated orchid species.  相似文献   

17.
The redbay ambrosia beetle Xyleborus glabratus is the vector of the symbiotic fungus, Raffaelea lauricola that causes laurel wilt, a highly lethal disease to members of the Lauraceae family. Pioneer X. glabratus beetles infect live trees with R. lauricola, and only when tree health starts declining more X. glabratus are attracted to the infected tree. Until now this sequence of events was not well understood. In this study, we investigated the temporal patterns of host volatiles and phytohormone production and vector attraction in relation to laurel wilt symptomology. Following inoculations with R. lauricola, volatile collections and behavioral tests were performed at different time points. Three days after infection (DAI), we found significant repellency of X. glabratus by leaf odors of infected swamp bay Persea palustris as compared with controls. However, at 10 and 20 DAI, X. glabratus were more attracted to leaf odors from infected than non-infected host plants. GC-MS analysis revealed an increase in methyl salicylate (MeSA) 3 DAI, whereas an increase of sesquiterpenes and leaf aldehydes was observed 10 and 20 DAI in leaf volatiles. MeSA was the only behaviorally active repellent of X. glabratus in laboratory bioassays. In contrast, X. glabratus did not prefer infected wood over healthy wood, and there was no associated significant difference in their volatile profiles. Analyses of phytohormone profiles revealed an initial increase in the amount of salicylic acid (SA) in leaf tissues following fungal infection, suggesting that the SA pathway was activated by R. lauricola infection, and this activation caused increased release of MeSA. Overall, our findings provide a better understanding of X. glabratus ecology and underline chemical interactions with its symbiotic fungus. Our work also demonstrates how the laurel wilt pathosystem alters host defenses to impact vector behavior and suggests manipulation of host odor by the fungus that attract more vectors.  相似文献   

18.
Diaphorina citri is a vector of the bacterial causative agent of Huanglongbing (HLB?=?Citrus greening), a severe disease affecting citrus crops. As there is no known control for HLB, manipulating insect behaviour through deployment of semiochemicals offers a promising opportunity for protecting citrus crops. The behavioural responses of D. citri to plant volatiles, and the identity of these plant volatiles were investigated. Volatiles were collected from host plants Murraya paniculata, Citrus sinensis, C. reshni, C. limettioides, Poncirus trifoliata, and from non-host plants Psidium guajava, Mangifera indica, Anacardium occidentale. In behavioural assays, female D. citri spent more time in the arms containing volatiles from either M. paniculata or C. sinensis compared to the control arms. When D. citri was exposed to volatiles collected from A. occidentale, they preferred the control arm. Volatiles emitted from the other studied plants did not influence the foraging behaviour of D. citri. Chemical analyses of volatile extracts from C. sinensis, M. paniculata, and A. occidentale revealed the presence of the terpenoids (E)-4,8-dimethylnona-1,3,7–triene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) in higher amounts in A. occidentale. In further behavioural bioassays, female D. citri spent less time in arms containing a synthetic blend of DMNT and TMTT compared to the control arms. Female D. citri also spent less time in arms containing the synthetic blend in combination with volatile extracts from either M. paniculata or C. sinensis compared to the control arms. Results suggest that higher release of the two terpenoids by A. occidentale make this species unattractive to D. citri, and that the terpenoids could be used in reducing colonisation of citrus plants and therefore HLB infection.  相似文献   

19.
In aquatic environments, chemical cues are believed to be associated with prey response to predation risk, yet few basic cue compositions are known despite the pronounced ecological and evolutionary significance of such cues. Previous work indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in amphibian tadpoles. However, work described here confirms that this specific ion species m/z 501.2886 is produced by injured tadpoles, exhibits increased spectral intensity with higher tadpole biomass, and is not produced by starved predators. These results indicate the anion is an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]?, m/z 501.2886, of C26H45O7S? which could not be determined in previous studies using low resolution instruments. Collision induced dissociation of m/z 501 ions formed product ions of m/z 97 and m/z 80, HSO4? and SO3?, respectively, showing the presence of sulfate. Green frog tadpoles, Lithobates clamitans, exposed to the m/z 501 anion or sodium dodecyl sulfate exhibited similar anti-predator responses, suggesting organic sulfate is a tadpole behavior modifier.  相似文献   

20.
A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and β-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C. douglasii) and ornamental hawthorn (C. monogyna) from Washington state. Selected subtraction assays showed that whereas removal of DMNT or 1-octen-3-ol significantly reduced the level of upwind flight, removal of myrcene and β-caryophyllene, or dimethyl trisulfide alone did not significantly affect the proportion of upwind flights. Our findings add to previous studies showing that populations of Rhagoletis flies infesting different host fruit are attracted to unique mixtures of volatile compounds specific to their respective host plants. Taken together, the results support the hypothesis that differences among flies in their behavioral responses to host fruit odors represent key adaptations involved in sympatric host plant shifts, contributing to host specific mating and generating prezygotic reproductive isolation among members of the R. pomonella sibling species complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号