首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z–Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z–penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.  相似文献   

2.
Entomopathogenic nematodes (EPNs) play a role in indirect defense of plants under attack by root herbivores. Several investigations have shown that EPNs are attracted or repelled by various volatile compounds (VOCs) released from insect damaged plant roots. We hypothesized that the directional responses of EPNs to the VOCs would be affected by foraging strategy and would vary among species, VOC type, and VOC concentrations. We tested the chemotactic responses of four commercial EPN species (Steinernema feltiae, S. carpocapsae, S. kraussei, and Heterorhabditis bacteriophora) to seven compounds released from insect (Melolontha hippocastani)-damaged (decanal, nonanal, octanal, undecane, 6-methyl-5-hepten-2-one, and 1,2,4-trimethylbenzene) and undamaged (2-ethyl-1-hexanol) potato tubers. Our results suggest that EPNs are able to distinguish herbivore-induced VOCs from those that are typical for healthy potato tubers. In our investigation, nonanal, octanal, and decanal had a greater influence on the movement of EPNs than other tested synthetic volatiles. Decanal was an attractant for H. bacteriophora and S. kraussei at both tested concentrations (as a pure compound and at a concentration of 0.03 ppm). The results suggest that the susceptibility to perception of chemical stimuli from the environment is a species-specific characteristic that prevails over the influence of the foraging strategy.  相似文献   

3.
In response to attack by herbivorous insects, plants produce semiochemicals for intra- and interspecific communication. The perception of these semiochemicals by conspecifics of the herbivore defines their choice for oviposition and feeding. We aimed to investigate the role of herbivore-induced plant volatiles (HIPVs) by Tuta absoluta larvae on the oviposition choice of conspecific females on tomato plants. We performed two- choice and non-choice bioassays with plants damaged by larvae feeding and intact control plants. We also collected headspace volatiles of those plants and tested the response of female antennae on those blends with Gas Chromatography- Electro-Antennographical Detection (GC-EAD). In total 55 compounds were collected from the headspace of T. absoluta larvae-infested plants. Our results show that female moths preferred to oviposit on intact control plants instead of damaged ones. Herbivory induced the emission of hexanal, (Ζ)-3-hexen-1-ol, (E)-β-ocimene, linalool, (Z)-3-hexenyl butanoate, methyl salicylate, indole, nerolidol, guaidiene-6,9, β-pinene, β-myrcene, α-terpinene, hexenyl hexanoate, β-elemene, β-caryophyllene and (Ε-Ε)- 4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), one unidentified sesquiterpene and three unknown compounds. In Electroantennographic (EAG) assays, the antennae of T. absoluta females responded to hexanal, (Ζ)-3-hexen-1-ol, methyl salicylate and indole. The antennae of T. absoluta females exhibited a dose-response in EAG studies with authentic samples. Strong EAG responses were obtained for compounds induced on damaged tomato plants, as well as in nonanal, a compound emitted by both infested and control plants. These compounds could be utilized in integrated pest management of T. absoluta.  相似文献   

4.
Plants damaged by herbivores emit volatile organic compounds (VOCs) that are used by parasitoids for host location. In nature, however, plants are exposed to multiple abiotic and biotic stresses of varying intensities, which may affect tritrophic interactions. Here, we studied the effects of ozone exposure and feeding by Pieris brassicae larvae on the VOCs emitted by Brassica nigra and the effects on oriented flight of the parasitoid Cotesia glomerata. We also investigated the oriented flight of C. glomerata in a wind-tunnel with elevated ozone levels. Herbivore-feeding induced the emission of several VOCs, while ozone alone had no significant effect. However, exposure to 120 ppb ozone, followed by 24 hr of herbivore-feeding, induced higher emissions of all VOCs as compared to herbivore-feeding alone. In accordance, herbivore-damaged plants elicited more oriented flights than undamaged plants, whereas plants exposed to 120 ppb ozone and 24 hr of herbivore-feeding elicited more oriented flights than plants subjected to herbivore-feeding alone. Ozone enrichment of the wind-tunnel air appeared to negatively affect orientation of parasitoids at 70 ppb, but not at 120 ppb. These results suggest that the combination of ozone and P. brassicae-feeding modulates VOC emissions, which significantly influence foraging efficiency of C. glomerata.  相似文献   

5.
Responses of the tachinid fly Exorista japonica Townsend to odors from corn plants infested with the fly’s host, the larvae of the noctuid moth Mythimna separata (Walker), were examined in a wind tunnel. Naïve female flies showed a higher rate of landing on M. separata-infested corn plants from which the host larvae had been removed than on artificially damaged or intact corn plants. When paper impregnated with a solution of headspace volatiles collected from host-infested plants was attached to intact plants, females landed on the plants at a high rate. Females also responded to intact plants to which had been attached with paper impregnated with a synthetic blend of nine chemicals identified previously in host-infested plants. There was an optimum concentration of the synthetic blend for the females’ landing. Of the nine chemicals identified previously, four [(E)-4,8-dimethyl-1,3,7-nonatriene, indole, 3-hydroxy-2-butanone, and 2-methyl-1-propanol] released only by host-infested plants were classified as a host-induced blend. The other five [(Z)-3-hexen-1-yl acetate, (E)-2-hexenal, hexanal, (Z)-3-hexen-1-ol, and linalool] were classified as a non-specific blend released not only by infested plants but also by artificially damaged or intact plants. In the wind tunnel, E. japonica females did not respond to intact plants to which paper containing a solution of non-specific blend or host-induced blend was attached. However, they showed a high level of response to a mixture of the non-specific and host-induced blends. These results indicate that naïve E. japonica use a combination of non-specific and host-induced blends as an olfactory cue for locating host-infested plants.  相似文献   

6.
Plant volatiles influence host selection of herbivorous insects. Since volatiles often vary in space and time, herbivores (especially polyphagous ones) may be able to use these compounds as cues to track variation in host plant quality based on their innate abilities and previous experience. We investigated the behavioral response of naïve (fed on artificial diet) and experienced (fed on poplar) gypsy moth (Lymantria dispar) caterpillars, a polyphagous species, towards constitutive and herbivore-induced black poplar (Populus nigra) volatiles at different stages of herbivore attack. In Y-tube olfactometer assays, both naïve and experienced caterpillars were attracted to constitutive volatiles and volatiles released after short-term herbivory (up to 6 hr). Naïve caterpillars also were attracted to volatiles released after longer-term herbivory (24–30 hr), but experienced caterpillars preferred the odor of undamaged foliage. A multivariate statistical analysis comparing the volatile emission of undamaged plants vs. plants after short and longer-term herbivory, suggested various compounds as being responsible for distinguishing between the odors of these plants. Ten compounds were selected for individual testing of caterpillar behavioral responses in a four-arm olfactometer. Naïve caterpillars spent more time in arms containing (Z)-3-hexenol and (Z)-3-hexenyl acetate than in solvent permeated arms, while avoiding benzyl cyanide and salicyl aldehyde. Experienced caterpillars avoided benzyl cyanide and preferred (Z)-3-hexenyl acetate and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) over solvent. Only responses to DMNT were significantly different when comparing experienced and naïve caterpillars. The results show that gypsy moth caterpillars display an innate behavioral response towards constitutive and herbivore-induced plant volatiles, but also that larval behavior is plastic and can be modulated by previous feeding experience.  相似文献   

7.
Diaphorina citri is a vector of the bacterial causative agent of Huanglongbing (HLB?=?Citrus greening), a severe disease affecting citrus crops. As there is no known control for HLB, manipulating insect behaviour through deployment of semiochemicals offers a promising opportunity for protecting citrus crops. The behavioural responses of D. citri to plant volatiles, and the identity of these plant volatiles were investigated. Volatiles were collected from host plants Murraya paniculata, Citrus sinensis, C. reshni, C. limettioides, Poncirus trifoliata, and from non-host plants Psidium guajava, Mangifera indica, Anacardium occidentale. In behavioural assays, female D. citri spent more time in the arms containing volatiles from either M. paniculata or C. sinensis compared to the control arms. When D. citri was exposed to volatiles collected from A. occidentale, they preferred the control arm. Volatiles emitted from the other studied plants did not influence the foraging behaviour of D. citri. Chemical analyses of volatile extracts from C. sinensis, M. paniculata, and A. occidentale revealed the presence of the terpenoids (E)-4,8-dimethylnona-1,3,7–triene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) in higher amounts in A. occidentale. In further behavioural bioassays, female D. citri spent less time in arms containing a synthetic blend of DMNT and TMTT compared to the control arms. Female D. citri also spent less time in arms containing the synthetic blend in combination with volatile extracts from either M. paniculata or C. sinensis compared to the control arms. Results suggest that higher release of the two terpenoids by A. occidentale make this species unattractive to D. citri, and that the terpenoids could be used in reducing colonisation of citrus plants and therefore HLB infection.  相似文献   

8.
Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C18-fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.  相似文献   

9.
Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.  相似文献   

10.
In response to herbivory by insects, various plants produce volatiles that attract enemies of the herbivores. Although ants are important components of natural and agro-ecosystems, the importance of herbivore-induced plant volatiles (HIPVs) as cues for ants for finding food sources have received little attention. We investigated responses of the ant Formica pratensis to volatiles emitted by uninfested and insect-infested cucumber (Cucumis sativus) and potato (Solanum tuberosum) plants. Cucumber plants were infested by the phloem-feeding aphid Aphis gossypii, the leaf chewer Mamestra brassicae or simultaneously by both insects. Potato plants were infested by either Aphis gossypii, by the leaf chewer Chrysodeixis chalcites or both. In olfactometer experiments, ants preferred volatile blends emitted by cucumber plants infested with M. brassicae caterpillars alone or combined with A. gossypii to volatiles of undamaged plants or plants damaged by A. gossypii only. No preference was recorded in choice tests between volatiles released by aphid-infested plants over undamaged plants. Volatiles emitted by potato plants infested by either C. chalcites or A. gossypii were preferred by ants over volatiles released by undamaged plants. Ants did not discriminate between potato plants infested with aphids and caterpillars over plants infested with aphids only. Plant headspace composition showed qualitative and/or quantitative differences between herbivore treatments. Multivariate analysis revealed clear separation between uninfested and infested plants and among herbivore treatments. The importance of HIPVs in indirect plant defence by ants is discussed in the context of the ecology of ant-plant interactions and possible roles of ants in pest management.  相似文献   

11.
The castor bean, Ricinus communis L., is a non-host plant for the large black chafer, Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). In laboratory bioassays we found that this plant was no less attractive than the main host plant (peanut, Arachis hypogaea) and three food plant species: velvetleaf (Abutilon theophrasti), the glossy privet (Ligustrum lucidum), and the Siberian elm (Ulmus pumila). In field trapping experiments a Soxhlet extract of castor bean leaves caught more beetles than the optimal sex lure blend [(R)-(?)-linalool and (L)-isoleucine methyl ester blended in a ratio of 1:4], compared at equal doses (500 μl), and laboratory bioassays indicated that a castor bean plant could enhance the attractiveness of different blend ratios of sex lures. Olfactometer bioassays showed that males prefer volatiles emitted from different combinations of castor bean plant extracts and a signaling female over a female alone. In the presence of castor bean plants copulation rates of H. parallela were highest among all test environments both in laboratory bioassays (60%) and in field tests (70%). This study, combined with our previous observation of the feeding behavior of H. parallela adults on castor bean leaves, suggests that castor bean plants may provide an attractive but risky mating site for H. parallela beetles. The enhancement of male mate-location and copulation rate in the presence of castor bean plants can balance its paralytic effects on H. parallela after intake of potential toxins contained in its leaves.  相似文献   

12.
13.
A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and β-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C. douglasii) and ornamental hawthorn (C. monogyna) from Washington state. Selected subtraction assays showed that whereas removal of DMNT or 1-octen-3-ol significantly reduced the level of upwind flight, removal of myrcene and β-caryophyllene, or dimethyl trisulfide alone did not significantly affect the proportion of upwind flights. Our findings add to previous studies showing that populations of Rhagoletis flies infesting different host fruit are attracted to unique mixtures of volatile compounds specific to their respective host plants. Taken together, the results support the hypothesis that differences among flies in their behavioral responses to host fruit odors represent key adaptations involved in sympatric host plant shifts, contributing to host specific mating and generating prezygotic reproductive isolation among members of the R. pomonella sibling species complex.  相似文献   

14.
Bracon hebetor is a larval ectoparasitoid that utilizes several pests belonging to the family Pyralidae (Lepidoptera) as hosts. In the present study, we analyzed the kairomonal response of this wasp to the male-produced sex pheromone of a host, the greater wax moth Galleria mellonella, an economically important pest of honeybees, Apis mellifera. Coupled gas chromatography-electroantennographic detection (GC-EAD) revealed three compounds in headspace collections from male G. mellonella that elicited responses from B. hebetor antennae: decanal and the previously identified sex pheromone components, nonanal and undecanal. Y-tube olfactometer tests that used naïve, mated wasps showed that females, but not males, were highly attracted to (a) male G. mellonella headspace samples, (b) two synthetic blends of nonanal and undecanal (in ratios matching that found in male moth samples), and (c) the two aldehydes tested individually. Further, female wasps did not discriminate between a blend of aldehydes and male G. mellonella headspace. In dose-response trials that used octanal, nonanal, decanal, and undecanal, no difference in EAG responses of the two sexes was observed, except for undecanal at the second highest dose, for which female antennae showed significantly larger responses than did male antennae. When the two binary blends were tested at different doses, female wasps were significantly attracted to the two highest doses (1 µg and 10 µg), but not to the lowest dose (100 ng). Our results show that females of this economically important parasitoid utilize the male-produced sex pheromone of a host as an indirect cue to guide them to potential oviposition sites.  相似文献   

15.
Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.  相似文献   

16.
Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids.  相似文献   

17.
Holotrichia parallela (Coleoptera: Scarabaeoidea) is a notorious pest of many crops. To improve the effectiveness of its female-produced sex pheromone (L-isoleucine methyl ester:(R)-(?)-linalool = 6:1), 14 plant volatiles, including dodecanoic acid, dodecanal, farnesol, α-farnesene, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexenyl acetate, (E)-2-hexenyl acetate, (R)-(+)-limonene, α-phellandrene, α-pinene, ocimene, methyl benzoate, and benzaldehyde, were individually evaluated using electroantennography and olfactometer assays. (E)-2-Hexenyl acetate and (Z)-3-hexenyl acetate were found to elicit the strongest responses in both males and females. Further testing of these two compounds in mixtures with the sex pheromone indicated that (E)-2-hexenyl acetate had a stronger synergistic effect than (Z)-3-hexenyl acetate. Field evaluations showed that mixtures of (E)-2-hexenyl acetate and the sex pheromone resulted in significantly higher catches than the sex pheromone alone. Using a 5:1 mixture of the sex pheromone and (E)-2-hexenyl acetate, the maximum number of females per trap per day was 14, showing a synergistic effect of a factor of four. For males, a 3:1 mixture of the sex pheromone and (E)-2-hexenyl acetate yielded a maximum number of 310 individuals per trap per day, equivalent to a synergistic effect of 175%. These results may provide the basis for the development of efficient pest management systems against H. parallela using plant volatiles and insect sex pheromones.  相似文献   

18.
Culicoides biting midges (Diptera: Ceratopognidae) cause pain and distress through blood feeding, and transmit viruses that threaten both animal and human health worldwide. There are few effective tools for monitoring and control of biting midges, with semiochemical-based strategies offering the advantage of targeting host-seeking populations. In previous studies, we identified the host preference of multiple Culicoides species, including Culicoides impunctatus, as well as cattle-derived compounds that modulate the behavioral responses of C. nubeculosus under laboratory conditions. Here, we test the efficacy of these compounds, when released at different rates, in attracting C. impunctatus under field conditions in Southern Sweden. Traps releasing 1-octen-3-ol, decanal, phenol, 4-methylphenol or 3-propylphenol, when combined with carbon dioxide (CO2), captured significantly higher numbers of C. impunctatus compared to control traps baited with CO2 alone, with low release rates (0.1 mg h?1, 1 mg h?1) being generally more attractive. In contrast, traps releasing octanal or (E)-2-nonenal at 1 mg h?1 and 10 mg h?1 collected significantly lower numbers of C. impunctatus than control traps baited with CO2 only. Nonanal and 2-ethylhexanol did not affect the attraction of C. impunctatus when compared to CO2 alone at any of the release rates tested. The potential use of these semiochemicals as attractants and repellents for biting midge control is discussed.  相似文献   

19.
Insect folivores can cause extensive damage to plants. However, different plant species, and even individuals within species, can differ in their susceptibility to insect attack. Polyphenols that readily oxidize have recently gained attention as potential defenses against insect folivores. We tested the hypothesis that variation in oxidizable phenolic concentrations in Eucalyptus foliage influences feeding and survival of Paropsis atomaria (Eucalyptus leaf beetle) larvae. First we demonstrated that oxidizable phenolic concentrations vary both within and between Eucalyptus species, ranging from 0 to 61 mg.g?1 DM (0 to 81% of total phenolics), in 175 samples representing 13 Eucalyptus species. Foliage from six individuals from each of ten species of Eucalyptus were then offered to batches of newly hatched P. atomaria larvae, and feeding, instar progression and mortality of the first and second instar larvae were recorded. Although feeding and survival parameters differed dramatically between individual plants, they were not influenced by the oxidizable phenolic concentration of leaves, suggesting that P. atomaria larvae may have effective mechanisms to deal with oxidizable phenolics. Larvae feeding on plants with higher nitrogen (N) concentrations had higher survival rates and reached third instar earlier, but N concentrations did not explain most of the variation in feeding and survival. The cause of variation in eucalypt herbivory by P. atomaria larvae is therefore still unknown, although oxidizable phenolics could potentially defend eucalypt foliage against other insect herbivores.  相似文献   

20.
Early colonization by Zyginidia scutellaris leafhoppers might be a key factor in the attraction and settling of generalist predators, such as Orius spp., in maize fields. In this paper, we aimed to determine whether our observations of early season increases in field populations of Orius spp. reflect a specific attraction to Z. scutellaris-induced maize volatiles, and how the responses of Orius predators to herbivore-induced volatiles (HIPVs) might be affected by previous experiences on plants infested by herbivorous prey. Therefore, we examined the innate and learned preferences of Orius majusculus toward volatiles from maize plants attacked by three potential herbivores with different feeding strategies: the leafhopper Z. scutellaris (mesophyll feeder), the lepidopteran Spodoptera littoralis (chewer), and another leafhopper Dalbulus maidis (phloem feeder). In addition, we examined the volatile profiles emitted by maize plants infested by the three herbivores. Our results show that predators exhibit a strong innate attraction to volatiles from maize plants infested with Z. scutellaris or S. littoralis. Previous predation experience in the presence of HIPVs influences the predator’s odor preferences. The innate preference for plants with cell or tissue damage may be explained by these plants releasing far more volatiles than plants infested by the phloem-sucking D. maidis. However, a predation experience on D. maidis-infested plants increased the preference for D. maidis-induced maize volatiles. After O. majusculus experienced L3-L4 larvae (too large to serve as prey) on S. littoralis-infested plants, they showed reduced attraction toward these plants and an increased attraction toward D. maidis-infested plants. When offered young larvae of S. littoralis, which are more suitable prey, preference toward HIPVs was similar to that of naive individuals. The HIPVs from plants infested by herbivores with distinctly different feeding strategies showed distinguishable quantitative differences in (Z)-3-hexenal, (E)-2-hexenal, and methyl salicylate. These compounds might serve as reliable indicators of prey presence and identity for the predator. Our results support the idea that feeding by Z. scutellaris results in the emission of maize’s HIPVs that initially recruit Orius spp. into maize fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号