首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PbTiO3(PT)-PbO-SiO2 glass-ceramic thin films were pro-duced by a sol-gel process. The crystallization of PT oc-curred at ∼700°C and was higher than that in PT-PbO-B2 O3 sol-gel glass-ceramics. A pinhole-free thin film was obtained by a rapid thermal annealing process when the designed glass-forming phase content in the thin film was >24 vol%. The measured dielectric constants of the films fairly agreed with the predicted values, based on a parallel mixing model. The dielectric constant was 219 and the di-electric loss was 0.04 in the 0.6PT-0.4(PbO-SiO2) film that was fired at 700°C.  相似文献   

2.
A modified polymerizable complex (PC) method for the preparation of the relaxor ferroelectric 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (PMN–PT) ceramics has been developed using a novel water-soluble Nb precursor. The effects of Pb content and sintering temperature on the structure, morphology, composition, and electrical properties of PMN–PT powders and ceramics were investigated systematically. It was found that the modified PC method could effectively reduce the initial crystallization temperature of the perovskite phase to 500°C. For PMN–PT samples with 15% excess Pb content sintered at 600°C for 2 h, the 87% perovskite phase can be achieved, which is much higher than that in conventional solid-state reactions and other solution-based methods at the same temperature. On further increasing the sintering temperature to 1100°C, the perovskite phase content basically remains constant. This is attributed to the Pb-deficient pyrochlore phase formation. On increasing the sintering temperature to 1250°C, the dielectric constant and remnant polarization of PMN–PT ceramics significantly improved due to the larger grain sizes, enhanced density, and the decreasing pyrochlore phase. PMN–PT ceramics with a 98.5% content of the perovskite phase have been fabricated at 1250°C. It displays typical ferroelectric relaxor characteristics with a remnant polarization of 18 μC/cm2, a coercive field of 9.6 kV/cm, a piezoelectric coefficient of d 33=360 pC/N, and room-temperature and maximum dielectric constants of 3600 and 10 500 at 1 kHz, respectively.  相似文献   

3.
A coating approach for synthesizing 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (0.9PMN–0.1PT) and PMN using a single calcination step was demonstrated. The pyrochlore phase was prevented by coating Mg(OH)2 on Nb2O5 particles. Coating of Mg(OH)2 on Nb2O5 was done by precipitating Mg(OH)2 in an aqueous Nb2O5 suspension at pH 10. The coating was confirmed using optical micrographs and zeta-potential measurements. A single calcination treatment of the Mg(OH)2-coated Nb2O5 particles mixed with appropriate amounts of PbO and PbTiO3 powders at 900°C for 2 h produced pyrochlore-free perovskite 0.9PMN–0.1PT and PMN powders. The elimination of the pyrochlore phase was attributed to the separation of PbO and Nb2O5 by the Mg(OH)2 coating. The Mg(OH)2 coating on the Nb2O5 improved the mixing of Mg(OH)2 and Nb2O5 and decreased the temperature for complete columbite conversion to ∼850°C. The pyrochlore-free perovskite 0.9PMN–0.1PT powders were sintered to 97% density at 1150°C. The sintered 0.9PMN–0.1PT ceramics exhibited a dielectric constant maximum of ∼24 660 at 45°C at a frequency of 1 kHz.  相似文献   

4.
By introducing polyethylene glycol (PEG) to the conventional simultaneously mixed oxide reaction route, the 0.65Pb(Mg1/3Nb2/3)–0.35PbTiO3 (0.65PMN–0.35PT) powders and ceramics with pure perovskite phase have been successfully synthesized. It is found that PEG interacts with PbO oxide in a way favoring the formation of the desired perovskite phase. As a result, pyrochlore-free 0.65PMN–0.35PT powders are synthesized at a low temperature of 850°C. The ceramics sintered at 1000°C show uniform grains with the size ranging from 1 to 3 μm. The room temperature dielectric constant is 3440. The maximum dielectric constant is 16 220 at 1 kHz. This method can be applied to the synthesis of other Pb-containing and Bi-containing ferroelectric materials, especially the relaxor-type ferroelectrics in which the pyrochlore phase is difficult to eliminate.  相似文献   

5.
Lead-based ferroelectric (FE) ceramics exhibit superior electromechanical properties; therefore, there has been an increased focus on developing new lead-based FE materials with high Curie temperature ( T c) and enhanced properties. The aim of this study was to investigate new compositions in the Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 ( PMN–PYbN–PT) system to enhance the electromechanical properties while increasing the T c and lowering the sintering temperature. The 0.575[0.5PMN–0.5PYbN]–0.425PT composition at PMN/PYbN (50/50) mole ratio were prepared by reactive sintering PMNT and PYbNT powder mixtures at 950°–1200°C for 4 h. PMNT and PYbNT powders were calcined via the columbite method. Samples were prepared by cold isostatic pressing at 80 MPa. Dense and fully perovskite 0.575[0.5PMN–0.5PYbN]–0.425PT ceramics were fabricated at 975°C for 4 h, and these samples displayed a remnant polarization ( P r) of 32 μ C/cm2, coercive field ( E c) of 17 kV/cm, and a piezoelectric charge coefficient ( d 33) of 475 pC/N. It is proposed that this ternary system can be tailored for various applications.  相似文献   

6.
Lead-based piezoelectric ceramics typically require sintering temperatures higher than 1000°C at which significant lead loss can occur. Here, we report a double precursor solution coating (PSC) method for fabricating low-temperature sinterable polycrystalline [Pb(Mg1/3Nb2/3)O3]0.63-[PbTiO3]0.37 (PMN–PT) ceramics. In this method, submicrometer crystalline PMN powder was first obtained by dispersing Mg(OH)2-coated Nb2O5 particles in a lead acetate/ethylene glycol solution (first PSC), followed by calcination at 800°C. The crystalline PMN powder was subsequently suspended in a PT precursor solution containing lead acetate and titanium isopropoxide in ethylene glycol to form the PMN–PT precursor powder (second PSC) that could be sintered at a temperature as low as 900°C. The resultant d 33 for samples sintered at 900°, 1000°, and 1100°C for 2 h were 600, 620, and 700 pm/V, respectively, comparable with the known value. We attributed the low sintering temperature to the reactive sintering nature of the present PMN–PT precursor powder. The reaction between the nanosize PT and the submicrometer-size PMN occurred roughly in the same temperature range as the densification, 850°–900°C, thereby significantly accelerating the sintering process. The present PSC technique is very general and should be readily applicable to other multicomponent systems.  相似文献   

7.
Lead zinc niobate–lead magnesium niobate–lead titanate (PZN–PMN–PT) ceramic powders of perovskite structure have been prepared via a mechanochemical processing route. A single-phase perovskite powder of ultrafine particles in the nanometer range was successfully synthesized when a MZN powder (columbite precursor) was mechanically activated for 10 h together with mixed lead and titanium oxides. The following steps are involved when the ternary oxide mixture is subjected to an increasing degree of mechanical activation. First, the starting materials are significantly refined in particle size as a result of the continuous deformation, fragmentation and then partially amorphized at the initial stage of mechanical activation. This is followed by the formation of perovskite nuclei and subsequent growth of these nuclei in the activated oxide matrix with increasing activation time. When calcined at various temperatures in the range of 500–800°C, pyrochlore phase was not detected by XRD phase analysis in the mechanochemically synthesized powder. Only a minor amount (∼2%) of pyrochlore phase was observed when the calcination temperature was raised to 850°C. The PZN–PMN–PT derived from the mechanochemically synthesized powder can be sintered to ∼98% relative density at a sintering temperature of 950°C. The PZN–PMN–PT sintered at 1100°C for 1 h exhibits a dielectric constant of ∼18 600 and a dielectric loss of 0.015 at the Curie temperature of 112°C when measured at a frequency of 0.1 kHz, together with a d 33 value of 323 ×10−12 pC/N.  相似文献   

8.
0.6Pb(Ni1/2W1/2)O3·0.4PbTiO3(0.6PNW·0.4PT) of complex perovskite structure is successfully synthesized by mechanical activation of mixed oxide composition, followed by sintering at 950°C. It exhibits a considerably stable temperature dependence of dielectric constant over the wide temperature range of −120° to 20°C, although there occurs a dielectric peak at around 74°C. Raman spectroscopic studies show the coexistence of tetragonal and pseudocubic perovskite phases on sintering at 950°C, which are attributed to the inhomogeneous distribution of PbTiO3 arising from mechanical activation. The dielectric behavior can be fine tuned by thermal annealing at 750°C, leading to phase redistribution in PNW-PT.  相似文献   

9.
A relaxor ferroelectric material, 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) with a pyrochlore-free phase, was prepared by using one-step calcination in the present study. The 0.9PMN-0.1PT powder with the pure perovskite phase was prepared successfully from a mixture of the PMN precursor and the crystalline PT by heating for 2 h at temperatures greaterthan equal to750°C. The PMN precursor was synthesized by adding an aqueous Mg(NO3)2 solution, rather than MgO, to the alcoholic slurry of PbO and Nb2O5. The 0.9PMN-0.1PT powder sintered to >96% relative density via heat treatment for 2 h at temperatures of 900°-1200°C. The highest room-temperature dielectric constant (epsilonrt) was 24700 at 1 kHz for the samples that were sintered at 1100°C; however, the samples that were sintered at 900°C still had epsilonrt values of 22600 at 1 kHz.  相似文献   

10.
Ceramic lead magnesium niobate–lead titanate ((1-x)PMN-xPT) of different compositions has been prepared by the columbite precursor method. This study discusses compositions ranging from 0.94PMN–0.06PT to 0.60PM–N0.40PT, focusing on two areas of the (1-x)PMNxPT system: compositions that exhibit electrostrictive behavior, and those that show piezoelectric behavior. In electrostrictive compositions where x is in the range of 0.06–0.20, the dielectric constant and electromechanical coupling factor dependencies on the bias field are evaluated. The optimal electromechanical properties are obtained with the composition 0.82PMN–0.18PT, measured at temperature T = Tm (the temperature of maximum dielectric constant) = 80°C and with a dc bias of 5 kV/cm. X–ray diffractometry is used to show that the (1-x)PMN-xPT system has a compositionally wide two–phase region and that 0.655PMN–0.345PT is the morphotropic phase boundary (MPB) composition. Electromechanical property evaluation shows that the optimal piezoelectric properties (piezoelectric charge coefficient ( d33 ) value of 720 pC/N, dielectric constant ( K ) value of 5400, and electromechanical planar and thickness coupling coefficient ( kp and kt , respectively) values of 62% and 46%, respectively) are obtained at the MPB composition.  相似文献   

11.
Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) (70/30) thin films were deposited by pulsed laser deposition using two growth strategies: adsorption controlled deposition from lead-rich targets (∼25–30 mass%) and lower-temperature deposition ( T d≤600°C) from targets containing a small amount of excess lead oxide (≤3 mass %). The substrates used were (001) SrRuO3/LaAlO3. Typical remanent polarization values ranged between 12 and 14 μC/cm2 for these films. The longitudinal piezoelectric coefficient ( d 33,f) was measured using in situ four-circle X-ray diffraction, and the transverse coefficient ( d 31,f or e 31,f) was measured using the wafer flexure method. d 33,f and e 31,f coefficients of ∼300–350 pm/V and ∼−11 C/m2 were calculated, respectively. In general, the piezoelectric coefficients and aging rates were strongly asymmetric, suggesting the presence of a polarization bias. The large, extremely stable piezoelectric response that results from poling parallel to the preferred polarization direction is attractive for miniaturized sensors and actuators.  相似文献   

12.
BiScO3–PbTiO3 (BSPT) thin films near the morphotropic phase boundary were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates via an aqueous sol–gel method. The thin films exhibited good crystalline quality and dense, uniform microstructures with an average grain size of 50 nm. The dielectric, ferroelectric, and piezoelectric properties of the sol–gel-derived BSPT thin films were investigated. A remanent polarization of 74 μC/cm2 and a coercive field of 177 kV/cm were obtained. The local effective piezoelectric coefficient d *33 was 23 pC/N at 2 V, measured by a scanning probe microscopy system. The dielectric peak appeared at 435°C, which was 80°C higher than that of Pb(Ti, Zr)O3 thin films.  相似文献   

13.
A low-temperature, single step, reactive sintering method for Pb(Mg1/3Nb2/3)O3 (PMN) and PMN–PbTiO3 (PMN–PT) processing was developed based on the coating of Mg(OH)2 on Nb2O5. This method simplified the processing of PMN and PMN–PT to a single step of heat-treatment and decreased the sintering temperature to 1000°C. It was found that the pyrochlore phase formation reaction at 500°C reduced the particle size to 130 nm. The overlap of the pyrochlor-perovskite phase transformation between 700° and 900°C and the densification process between 800° and 1000°C improved the sintering process. These two factors were the major reasons of the low temperature sintering.  相似文献   

14.
Fe-doped 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 (PMN–0.38PT) single crystals were grown by a modified Bridgman technique. Two kinds of single crystals with different iron ion molar ratios, (i) 0.2 mol% and (ii) 1.0 mol%, were obtained. The effect of doping iron ions on the dielectric and pyroelectric properties of the 〈111〉-oriented PMN–0.38PT single crystals was examined. The temperature of the permittivity maximum ( T m) exhibits no dispersion behavior and decreases with increasing doping concentration. The dielectric loss of the 0.2 mol% Fe-doped PMN–0.38PT single crystal is much lower than that of the high dopant content crystal (1.0 mol%) and undoped crystal, which makes it possess excellent pyroelectric performance. By a dynamic method, the measured pyroelectric coefficient and detectivity figure of merit ( F D) of 0.2 mol% Fe-doped PMN–0.38PT single crystal are 439 μC/m2·K and 56.3 μPa−1/2, respectively, both better than those of widely used pyroelectric single crystal LiTaO3. The results imply that the single crystal is a promising candidate for infrared detectors and other pyroelectric applications. The mechanism of doping effect was also discussed based on the principles of crystal chemistry.  相似文献   

15.
Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN–0.1 PT) from a stoichiometric mixture of starting materials was synthesized by applying a mechanochemical technique to the stage of a precursor. A stoichiometric mixture of PbO, TiO2, Mg(OH)2, and Nb2O5 was milled for 60 min and heated at temperatures as low as 850°C for 4 h to obtain a single phase. The maximum dielectric constant of the samples from the milled mixture increased as the sintering temperature increased, with the remarkable grain growth, and attained 24600 at 1200°C. In contrast, poor densification and coexistence of the pyrochlore phase were observed on the samples from the nonmilled mixture. Further observation suggested that the pyrochlore phase concentrated near the surface during sintering and then migrated into the PbZrO3 packing powder, leading to a pyrochlore–free phase at 1250°C. The dielectric constant of the latter ceramics was explained by the series mixing rule for the dielectric constant of a diphasic solid.  相似文献   

16.
Polycrystalline barium titanate fired in nitrogen at 1300° to 1400°C accommodates up to 3 mole % UO2 in solid solution; its structure is then cubic at room temperature. With BaUO3 additions the structure becomes disordered and quasi-cubic. In air, about 1 mole % UO2 goes into solid solution in BaTiO3 but the structure remains tetragonal. Diffraction peaks of a new phase, possibly a ternary oxide of barium, uranium, and titanium, appear in patterns of specimens containing more than 2 mole % UO2. The dielectric constant of BaTiO3 ceramics fired in air, steam, or oxygen increases with up to about 0.5 mole % UO2 but declines rapidly above this level. The dielectric constant of BaUO3 is about two orders of magnitude lower than that of BaTiO3, and additions of BaUO3 invariably lower the dielectric constant of BaTiO3.  相似文献   

17.
The domain structure of ferroelectrics changes during poling has a direct influence on the macroscopic properties of the materials. The intensity variation of the different X-ray diffraction (XRD) pattern profiles was used to identify the percentage of 90° domain reorientation in the tetragonal phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) ceramics after poling. The results are consistent with the change of piezoelectric properties. In addition, by using XRD patterns, a spatial distribution of polarization in a well-poled 0.62PMN–0.38PT ceramics has been determined and was found to be best described by the Cauchy function W 00l (φ)=1/(1+0.023φ2).  相似文献   

18.
A sol-gel process was used to prepare pyroelectric Ba0.8Sr0.2TiO3 thin films with large columnar grains (100–200 nm in diameter) on Pt/Ti/SiO2/Si substrates, via using a 0.05 M solution precursor. The relationship between dielectric constant and temperature (ɛr- T ) showed two distinctive phase transitions in the Ba0.8Sr0.2TiO3 thin films. Both the remnant polarization and the coercive field decreased as the temperature increased from −73°C to 40°C. Its low dissipation factor (tan δ= 2.6%) and high pyroelectric coefficient ( p = 4.6 × 10−4 C·(m2·K)−1 at 33°C), together with its good insulating properties, made the prepared Ba0.8Sr0.2TiO3 thin films promising for use in uncooled infrared detectors and thermal imaging applications.  相似文献   

19.
Ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN-PT) thin films were deposited on ZrO2/SiO2/silicon substrates using a chemical-solution-deposition method. Using a thin PZT film as a seed layer for the PMN-PT films, phase-pure perovskite PMN-PT could be obtained via rapid thermal annealing at 750°C for 60 s. The electrical properties of in-plane polarized thin films were characterized using interdigitated electrode arrays on the film surface. Ferroelectric hysteresis loops are observed with much larger remanent polarizations (∼24 μC/cm2) than for through-the-thickness polarized PMN-PT thin films (10–12 μC/cm2) deposited on Pt/Ti/Si substrates. For a finger spacing of 20 μm, the piezoelectric voltage sensitivity of in–plane polarized PMN-PT thin films was ∼20 times higher than that of through-the-thickness polarized PMN-PT thin films.  相似文献   

20.
A method based on the use of four piezoelectric resonances for three sample geometries that allows obtaining the full set of linear electric, mechanical, and electromechanical coefficients, and all related losses of a piezoelectric ceramic has been applied to Mn-doped 0.655Pb(Mg1/3Nb2/3)O3–0.345PbTiO3 at the morphotropic phase boundary (MPB PMN–PT). Length-poled MPB PMN–PT ceramic plates presented piezoelectric shear double resonances associated with a thickness gradient of tetragonal and rhombohedral (or monoclinic) phases that originated during poling. The versatility of the method still allowed addressing these double resonances and obtaining all the linear coefficients and losses of the well-poled material. These are given for MPB PMN–PT and compared with those of a Navy type II Pb(Zr,Ti)O3 (PZT) ceramic. MPB PMN–PT presents piezoelectric coefficients as high as soft PZT but significantly lower losses, and so less overheating and hysteresis under high driving fields. Its thermal stability has been studied up to 100°C, and the temperature dependence of a number of linear coefficients and of the thickness and planar coupling factors and frequency constants of disks has been obtained. The latter thickness parameters hardly changed with temperature, while planar ones showed a relative variation of 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号