首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN-PT) thin films were deposited on ZrO2/SiO2/silicon substrates using a chemical-solution-deposition method. Using a thin PZT film as a seed layer for the PMN-PT films, phase-pure perovskite PMN-PT could be obtained via rapid thermal annealing at 750°C for 60 s. The electrical properties of in-plane polarized thin films were characterized using interdigitated electrode arrays on the film surface. Ferroelectric hysteresis loops are observed with much larger remanent polarizations (∼24 μC/cm2) than for through-the-thickness polarized PMN-PT thin films (10–12 μC/cm2) deposited on Pt/Ti/Si substrates. For a finger spacing of 20 μm, the piezoelectric voltage sensitivity of in–plane polarized PMN-PT thin films was ∼20 times higher than that of through-the-thickness polarized PMN-PT thin films.  相似文献   

2.
Ferroelectric films, PbZr x Ti1− x O3 ( x = 0 to 0.6), have been prepared from corresponding metal alkoxides partially stabilized with acetylacetone through the sol-gel process. The films dip-coated in an ambient atmosphere were heat-treated at 400°C for decomposition of residual organics and then at temperatures between 500° and 700°C for crystallization of the films. The perovskite phase precipitated at temperatures above 560°C, accompanied by an increase in dielectric constant. The dielectric constant of the films, which was comparable with that of sintered bodies, showed a maximum (∼620) at around x = 0.52 in PbZr x Ti1− x O3. These films showed D – E hysteresis, with slightly higher values of coercive field, compared with those of sintered bodies.  相似文献   

3.
0.4Pb(Mg1/3Nb2/3)O3–0.3Pb(Mg1/2W1/2)O3–0.3PbTiO3+ x MgO ( x = 0 to 0.04) were prepared by a metal alkoxide method. The percent of perovskite phase of the calcined powders increased with increased calcination temperatures. About 89% of perovskite phase was obtained at 1050°C. The dielectric constant of the pellets fired at 1100°C was increased by the addition of 10 wt% excess Mg(OC2H5)2 and had a maximum value of 7532 at 1 kHz.  相似文献   

4.
The compositionally graded BiScO3–PbTiO3 (BSPT) thin films were fabricated on Pt/Ti/SiO2/Si by a sol–gel method. For the up-graded thin film, the PbTiO3 content increased from the film–substrate interface to the surface of the film, while the down-grade thin film showed the opposite trend. The graded thin films exhibited single-phase structures and dense microstructures. The dielectric and ferroelectric properties of the thin films were investigated. The results showed that the compositionally graded BSPT thin films had similar remanent polarization value but a higher dielectric constant, dielectric tunability, and piezoelectric coefficient d 33 compared with the homogeneous thin film with a composition of 0.36BiScO3–0.64PbTiO3 at the morphotropic phase boundary.  相似文献   

5.
Lead magnesium niobium titanate (PMNT) thin films with a composition near the morphotropic phase boundary were prepared on conventional Pt(111)/Ti/SiO2/Si substrates using a modified sol-gel process. A PbO seeding layer was introduced to the interface between the PMNT layer and the substrate to enhance the [001]-preferential orientation of the PMNT film. Single-phase perovskite PMNT films with highly [001]-preferential orientation were obtained at reduced annealing temperatures compared with the PMNT films directly deposited on the same substrates. The dielectric and ferroelectric properties of the prepared PMNT films were evaluated as a function of annealing temperature.  相似文献   

6.
A solution sol-gel method has been developed to prepare 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) ceramics. During the processing the gel first converted to cubic pyrochlore phase at a calcination temperature of 600°C followed by the formation of pure perovskite phase at 775°C. The ceramics sintered at 1250°C for 4 h showed ≈98% of the theoretical density. The room-temperature dielectric constant of the pellets sintered at 1250°C showed a maximum value of 25035 at 1 kHz. Sintering studies at different temperatures revealed that the dielectric constant increased with increasing grain size in these ceramics.  相似文献   

7.
BiScO3–PbTiO3 (BSPT) thin films near the morphotropic phase boundary were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates via an aqueous sol–gel method. The thin films exhibited good crystalline quality and dense, uniform microstructures with an average grain size of 50 nm. The dielectric, ferroelectric, and piezoelectric properties of the sol–gel-derived BSPT thin films were investigated. A remanent polarization of 74 μC/cm2 and a coercive field of 177 kV/cm were obtained. The local effective piezoelectric coefficient d *33 was 23 pC/N at 2 V, measured by a scanning probe microscopy system. The dielectric peak appeared at 435°C, which was 80°C higher than that of Pb(Ti, Zr)O3 thin films.  相似文献   

8.
BiScO3–PbTiO3 (BSPT) thin films were fabricated via a sol–gel method on Pt(111)/Ti/SiO2/Si(111) substrates. The effects of different factors on the orientation of the sol–gel-derived BSPT thin films were investigated. The results showed that a higher lead excess concentration, longer drying time, higher pyrolysis temperature, longer pyrolysis time, higher crystallization temperature, and longer crystallization time could enhance the (100) orientation of the BSPT thin films. Based on the experimental results, a mechanism for the orientation evolution in the sol–gel-derived BSPT thin films was proposed. The production of the (100) orientation was attributed to the (100)-oriented PbO nanocrystals forming during the pyrolysis process due to the lattice match.  相似文献   

9.
We have investigated the synthesis of lead-magnesium-niobate–lead-titanate perovskite powder using high-energy milling of the constituent oxides. The compositions of the crystalline and amorphous phases as a function of milling time were determined with X-ray powder diffraction using a Rietveld refinement. The perovskite can be formed by two reaction routes. In the initial stage of milling, it is formed directly from the highly activated nano-sized constituent oxides, and after a certain milling time it is mainly formed from a pyrochlore phase. The obtained as-milled powder consists of crystalline perovskite and an amorphous phase that crystallizes into the perovskite after heating at 800°C.  相似文献   

10.
PbTiO3(PT)-PbO-SiO2 glass-ceramic thin films were pro-duced by a sol-gel process. The crystallization of PT oc-curred at ∼700°C and was higher than that in PT-PbO-B2 O3 sol-gel glass-ceramics. A pinhole-free thin film was obtained by a rapid thermal annealing process when the designed glass-forming phase content in the thin film was >24 vol%. The measured dielectric constants of the films fairly agreed with the predicted values, based on a parallel mixing model. The dielectric constant was 219 and the di-electric loss was 0.04 in the 0.6PT-0.4(PbO-SiO2) film that was fired at 700°C.  相似文献   

11.
12.
A coating approach for synthesizing 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (0.9PMN–0.1PT) and PMN using a single calcination step was demonstrated. The pyrochlore phase was prevented by coating Mg(OH)2 on Nb2O5 particles. Coating of Mg(OH)2 on Nb2O5 was done by precipitating Mg(OH)2 in an aqueous Nb2O5 suspension at pH 10. The coating was confirmed using optical micrographs and zeta-potential measurements. A single calcination treatment of the Mg(OH)2-coated Nb2O5 particles mixed with appropriate amounts of PbO and PbTiO3 powders at 900°C for 2 h produced pyrochlore-free perovskite 0.9PMN–0.1PT and PMN powders. The elimination of the pyrochlore phase was attributed to the separation of PbO and Nb2O5 by the Mg(OH)2 coating. The Mg(OH)2 coating on the Nb2O5 improved the mixing of Mg(OH)2 and Nb2O5 and decreased the temperature for complete columbite conversion to ∼850°C. The pyrochlore-free perovskite 0.9PMN–0.1PT powders were sintered to 97% density at 1150°C. The sintered 0.9PMN–0.1PT ceramics exhibited a dielectric constant maximum of ∼24 660 at 45°C at a frequency of 1 kHz.  相似文献   

13.
Polarization reversal and domain dynamics were investigated in 0.7Pb(Mg1/3Nb2/3)O3·0.3PbTiO3 using a method of current transients. Investigations were performed as a function of applied electric field. The kinetics of the transients were modeled to a stretched exponential-type function.  相似文献   

14.
The pyroelectric properties of (1− x )Pb(Mg1/3Nb2/3)O3− x PbTiO3 (PMN− x PT) single crystals with various compositions and orientations have been investigated using a dynamic method. Excellent pyroelectric performances can be achieved in 〈111〉-oriented rhombohedral PMN− x PT (0.24≤ x ≤0.30) crystals, where the measurement direction corresponds to the polar axis of the crystal. At room temperature, the pyroelectric coefficient and the detectivity figure of merit ( F d ) for the 〈111〉-oriented PMN–0.28PT single crystal are 8.55 × 10−4 C·(m2·K)−1 and 9.89 × 10−5 Pa−1/2 (100 Hz), respectively, superior to those of the widely used pyroelectric materials. They are also weak temperature dependent and nearly independent of frequency. These outstanding pyroelectric performances make the single crystals a promising candidate for uncooled infrared detectors and thermal imagers.  相似文献   

15.
The aging behavior of the solid-solution series (Pb(Mg1/3Nb2/3)O3)1− x –(PbTiO3) x (PMN1− x −PT x ) prepared by chemical-solution deposition without seeding layers was investigated. A strong influence of the rapid thermal annealing step on the film density was determined. The best nucleation and density of the thin films occurred when each deposited layer was separately pyrolyzed and crystallized. The thin-film microstructure was investigated using scanning electron microscopy. Conventional capacitance-voltage and hysteresis measurements were performed. For the first time, investigations on the fatigue performance and the leakage current for alternating-current and direct-current voltage were executed, which are important for the reliability in device applications.  相似文献   

16.
The doping of silver and palladium into a 0.9Pb-(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN–PT) ceramic has been investigated. It was found that Ag could be incorporated into the PMN–PT lattice, though this was almost impossible with Pd. Doping at up to 0.2 mol% of Ag and Pd reduced the maximum dielectric constant ( K max) from 21000 to 14000 without any conspicuous change in physical properties. Order–disorder transitions in the perovskite structure contributed to the decrease in K max, since the diffuseness parameter, δ, which represents the degree of the order-disorder relationship, increased with Ag doping. However, addition of more than 0.2 mol% increased K max. Increases in grain size and in the perovskite ratio contributed to this increase. The dielectric properties of Ag/Pd-doped samples were intermediate between the Ag- and Pd-doped samples.  相似文献   

17.
Additions of excess PbO to the perovskite Pb[(Mg1/3Nb2/3)0.92Ti0.08]O3 solid solution enhanced the formation of a liquid phase at 840°C, which served as a densification aid for the ceramics. The liquid phase allowed elimination of pores and promoted grain growth during sintering. With additions of 1 to 2 wt% excess PbO, densities in excess of 97% of theoretical were obtained at a sintering temperature of 950°C. The peak dielectric constants of the resulting ceramics were over 18 000 at 30°C and dissipation factors less than 1%. Additions of PbO in excess of 2 wt% resulted in inferior dielectric properties due mainly to the dilution of the ferroelectric phase.  相似文献   

18.
Single crystals with the composition of 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 (PMNT29) were grown using the solid-state crystal growth (SSCG) method. Compared with the conventional Bridgman grown crystals, the SSCG PMNT29 crystals were found to possess comparable piezoelectric, dielectric, and electromechanical properties ( d 33∼1500 pC/N, ɛT 33/ ɛ 0∼5400 and k 33∼90%), with the same Curie temperature ( T C) and ferroelectric phase transformation temperature ( T R – T ). The full set of elastic, piezoelectric, and dielectric material constants were determined by the resonance method for the SSCG grown PMNT29 crystals according to IEEE standards and compared with Bridgman grown crystals. The dielectric temperature behavior and the strain field characteristics were investigated, demonstrating excellent performance over the temperature range from room temperature to 95°C. Strain behavior at high electric fields was found to be different from Bridgman growth crystals and believed to be attributed to different domain structures.  相似文献   

19.
The domain structure of ferroelectrics changes during poling has a direct influence on the macroscopic properties of the materials. The intensity variation of the different X-ray diffraction (XRD) pattern profiles was used to identify the percentage of 90° domain reorientation in the tetragonal phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) ceramics after poling. The results are consistent with the change of piezoelectric properties. In addition, by using XRD patterns, a spatial distribution of polarization in a well-poled 0.62PMN–0.38PT ceramics has been determined and was found to be best described by the Cauchy function W 00l (φ)=1/(1+0.023φ2).  相似文献   

20.
Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) (70/30) thin films were deposited by pulsed laser deposition using two growth strategies: adsorption controlled deposition from lead-rich targets (∼25–30 mass%) and lower-temperature deposition ( T d≤600°C) from targets containing a small amount of excess lead oxide (≤3 mass %). The substrates used were (001) SrRuO3/LaAlO3. Typical remanent polarization values ranged between 12 and 14 μC/cm2 for these films. The longitudinal piezoelectric coefficient ( d 33,f) was measured using in situ four-circle X-ray diffraction, and the transverse coefficient ( d 31,f or e 31,f) was measured using the wafer flexure method. d 33,f and e 31,f coefficients of ∼300–350 pm/V and ∼−11 C/m2 were calculated, respectively. In general, the piezoelectric coefficients and aging rates were strongly asymmetric, suggesting the presence of a polarization bias. The large, extremely stable piezoelectric response that results from poling parallel to the preferred polarization direction is attractive for miniaturized sensors and actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号