首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A novel component of the ubiquitination system, called NOSA, is essential for cellular differentiation in Dictyostelium discoideum. Disruption of nosA does not affect the growth rate but causes an arrest in development after the cells have aggregated. nosA contains seven exons and codes for a developmentally regulated 3.5-kb mRNA. The 125-kDa NOSA protein is present in the cytosol at constant levels during growth and development. The C-terminal region of NOSA has homology with ubiquitin fusion degradation protein-2 (UFD2) of Saccharomyces cerevisiae and putative homologs in Caenorhabditis elegans and humans. UFD2 is involved in the ubiquitin-mediated degradation of model substrates in which ubiquitin forms part of the translation product, but ufd2 mutants have no detected phenotype. In accord with the homology to UFD2, we found differences in the ubiquitination patterns between nosA mutants and their parental cell line. While general in vivo and in vitro ubiquitination is minimally affected, ubiquitination of individual proteins is altered throughout growth and development in nosA mutants. These findings suggest that events involving ubiquitination are critical for progression through the aggregate stage of the Dictyostelium life cycle.  相似文献   

2.
Most mitochondrial proteins are nuclear encoded, synthesized on cytosolic ribosomes, and imported into the mitochondria. We have identified and characterized a 309 amino acid human protein with a molecular weight of 34 kDa that functions as a subunit of the translocase for the import of such proteins. hTom34 (34-kDa Translocase of the Outer Mitochondrial Membrane) is displayed on the surface of mitochondria and is resistant to extraction under alkaline conditions. Antibodies raised against hTom34 specifically inhibit in vitro import of the mitochondrial precursor protein preornithine transcarbamylase into mitochondria isolated from rat liver. Based on trypsin digestion experiments, the receptor has a large (27 kDa) C-terminal domain exposed to the cytosol. This novel component of the protein import machinery possesses a 62 residue motif conserved with the Tom70 family of mitochondrial receptors but otherwise appears to have no counterpart so far characterized in the mitochondria of any other species.  相似文献   

3.
Children living in sub-Saharan Africa bear the brunt of the mortality from falciparum malaria, yet there is a dearth of relevant post-mortem data. Clinical studies from centers in Africa suggest that the pathophysiology of severe malaria is different in children and adults. Three overlapping clinical syndromes, metabolic acidosis manifesting as hyperpnea, cerebral malaria, and severe anemia, are responsible for nearly all the deaths in African children. Despite improvements in antimalarial treatment, there has not been a significant reduction in mortality. We review the pathology and pathophysiology of fatal falciparum malaria in African children. Many questions remain, the answers to which would facilitate the development and evaluation of new approaches to the management of this disease.  相似文献   

4.
5.
Shortly after initiation of Dictyostelium fruiting body formation, prespore cells begin to differentiate into non-motile spores. Although these cells lose their ability to move, they are, nevertheless, elevated to the tip of the stalk. Removal of the amoeboid anterior-like cells, located above the differentiating spores in the developing fruiting body, prevents further spore elevation although the stalk continues to elongate. Furthermore, replacement of the anterior-like cells with anterior-like cells from another fruiting body largely restores the ability to lift the spores to the top of the stalk. However, if amoeboid prestalk cells are used to replace the anterior-like cells, there is no restoration of spore elevation. Finally, when a droplet of mineral oil replaces differentiating spores, it is treated as are the spores: the mineral oil is elevated in the presence of anterior-like cells and becomes arrested on the stalk in the absence of anterior-like cells. Because a similar droplet of mineral oil is totally ignored by slug tissue, it appears that there is a dramatic transformation in the treatment of non-motile matter at this point in Dictyostelium development.  相似文献   

6.
The site-selected insertion (SSI) procedure was used to generate insertional knockout mutations in the gene for tomato polygalacturonase (PG), a critical enzyme in fruit ripening. Previously, it had been shown that the Dissociation (Ds) elements in a select group of tomato plants frequently inserted into PG, at least in somatic tissues. DNA isolated from pollen produced by progeny of these plants was screened by SSI to identify plants likely to transmit the insertions in PG to progeny. These results identified one family as likely candidate for yielding germinally transmitted insertions. Four thousand progeny were screened and five were found containing germinally transmitted Ds insertions in PG, one of which contained two Ds insertions in PG. The Ds elements were stabilized by genetically removing the transposase and four of the five insertions were recovered as homozygous in the next generation. Enzymatic analysis of fruit from these individuals demonstrated that there was at least a 1000-fold reduction in polygalacturonase levels in those plants bearing Ds insertions in PG exons. Individuals with modified PG sequences due to the sequence footprint, resulting from excision of the element, were identified using the single-strand conformational polymorphism (SSCP) method. Enzymatic analysis of fruit from a plant homozygous for one such excision allele showed a significant reduction in polygalacturonase activity. Since there is no transgenic material left in PG, this demonstrates the ability to modify a gene of commercial value in planta and subsequently removing all transgenic material.  相似文献   

7.
Opioid receptors are regulated within minutes after activation by G protein-coupled receptor kinase-mediated phosphorylation and dynamin-dependent endocytosis. We addressed the question of whether phosphorylation is required for opioid receptor endocytosis by examining a functional, truncated mutant delta opioid receptor (DOR344T), which is missing phosphorylation sites located in the carboxyl-terminal cytoplasmic domain. DOR344T receptors expressed in Chinese hamster ovary cells remained predominantly in the plasma membrane, even in the presence of saturating concentrations of agonist, consistent with previous studies demonstrating strongly inhibited endocytosis of truncated receptors in this cell type. In marked contrast, DOR344T receptors expressed at similar levels in human embryonal kidney (HEK) 293 cells exhibited rapid, ligand-induced internalization either in the presence of peptide (DADLE) or alkaloid (etorphine) agonist. Quantitative assays using ELISA and flow cytometric techniques indicated that DOR344T receptors were endocytosed in HEK293 cells with similarly rapid kinetics as full-length DOR (t1/2 < 10 min), and both full-length DOR and DOR344T mutant receptors were endocytosed by a dynamin-dependent mechanism involving clathrin-coated pits. Nevertheless, DOR344T receptors failed to undergo any detectable constitutive or agonist-induced phosphorylation in the same cells in which dynamin-dependent endocytosis was observed. These findings establish the first example of a G protein-coupled receptor that does not require phosphorylation to undergo dynamin-dependent endocytosis, and they suggest that significant cell type-specific differences exist in the biochemical requirements for ligand-induced concentration of opioid receptors in clathrin-coated pits.  相似文献   

8.
We have isolated the embryonic lethal gene muscleblind (mbl) as a suppressor of the sev-svp2 eye phenotype. Analysis of clones mutant for mbl during eye development shows that it is autonomously required for photoreceptor differentiation. Mutant cells are recruited into developing ommatidia and initiate neural differentiation, but they fail to properly differentiate as photoreceptors. Molecular analysis reveals that the mbl locus is large and complex, giving rise to multiple different proteins with common 5' sequences but different carboxy termini. Mbl proteins are nuclear and share a Cys3His zinc-finger motif which is also found in the TIS11/NUP475/TTP family of proteins and is highly conserved in vertebrates and invertebrates. Functional analysis of mbl, the observation that it also dominantly suppresses the sE-Jun(Asp) gain-of-function phenotype and the phenotypic similarity to mutants in the photoreceptor-specific glass gene suggest that mbl is a general factor required for photoreceptor differentiation.  相似文献   

9.
A homolog of the Serum Response Factor (SRF) has been isolated from Dictyostelium discoideum and its function studied by analyzing the consequences of its gene disruption. The MADS-box region of Dictyostelium SRF (DdSRF) is highly conserved with those of the human, Drosophila and yeast homologs. srfA is a developmentally regulated gene expressed in prespore and spore cells. This gene plays an essential role in sporulation as its disruption leads to abnormal spore morphology and loss of viability. The mutant spores were round and cellulose deposition seemed to be partially affected. Initial prestalk and prespore cell differentiation did not seem to be compromised in the mutant since the expression of several cell-type-specific markers were found to be unaffected. However, the mRNA level of the spore marker spiA was greatly reduced. Activation of the cAMP-dependent protein kinase (PKA) by 8-Br-cAMP was not able to fully bypass the morphological defects of srfA- mutant spores, although this treatment induced spiA mRNA expression. Our results suggest that DdSRF is required for full maturation of spores and participates in the regulation of the expression of the spore-coat marker spiA and probably other maturation genes necessary for proper spore cell differentiation.  相似文献   

10.
11.
12.
The fibronectin type III domain (FN3) is a small autonomous folding unit which occurs in many animal proteins involving in ligand binding. The beta-sandwich structure of FN3 closely resembles that of immunoglobulin domains. We have prepared a phage display library of FN3 in which residues in two surface loops were randomized. We have selected mutant FN3s which bind to a test ligand, ubiquitin, with significant affinities, while the wild-type FN3 shows no measurable affinity. A dominant clone was expressed as a soluble protein and its properties were investigated in detail. Heteronuclear NMR characterization revealed that the selected mutant protein retains the global fold of FN3. It also has a modest conformational stability despite mutations at 12 out of 94 residues. These results clearly show the potential of FN3 as a scaffold for engineering novel binding proteins.  相似文献   

13.
In an attempt to identify proteins that might underlie membrane trafficking processes in ciliates, calcium-dependent, phospholipid-binding proteins were isolated from extracts of Paramecium tetraurelia. The major protein obtained, named copine, had a mass of 55 kDa, bound phosphatidylserine but not phosphatidylcholine at micromolar levels of calcium but not magnesium, and promoted lipid vesicle aggregation. The sequence of a 920-base pair partial cDNA revealed that copine is a novel protein that contains a C2 domain likely to be responsible for its membrane active properties. Paramecium was found to have two closely related copine genes, CPN1 and CPN2. Current sequence data bases indicate the presence of multiple copine homologs in green plants, nematodes, and humans. The full-length sequences reveal that copines consist of two C2 domains at the N terminus followed by a domain similar to the A domain that mediates interactions between integrins and extracellular ligands. A human homolog, copine I, was expressed in bacteria as a fusion protein with glutathione S-transferase. This recombinant protein exhibited calcium-dependent phospholipid binding properties similar to those of Paramecium copine. An antiserum raised against a fragment of human copine I was used to identify chromobindin 17, a secretory vesicle-binding protein, as a copine. This association with secretory vesicles, as well the general ability of copines to bind phospholipid bilayers in a calcium-dependent manner, suggests that these proteins may function in membrane trafficking.  相似文献   

14.
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway.  相似文献   

15.
16.
Drosophila is an ideal metazoan model system for analyzing the role of nonmuscle myosin-II (henceforth, myosin) during development. In Drosophila, myosin function is required for cytokinesis and morphogenesis driven by cell migration and/or cell shape changes during oogenesis, embryogenesis, larval development and pupal metamorphosis. The mechanisms that regulate myosin function and the supramolecular structures into which myosin incorporates have not been systematically characterized. The genetic screens described here identify genomic regions that uncover loci that facilitate myosin function. The nonmuscle myosin heavy chain is encoded by a single locus, zipper. Contiguous chromosomal deficiencies that represent approximately 70% of the euchromatic genome were screened for genetic interactions with two recessive lethal alleles of zipper in a second-site noncomplementation assay for the malformed phenotype. Malformation in the adult leg reflects aberrations in cell shape changes driven by myosin-based contraction during leg morphogenesis. Of the 158 deficiencies tested, 47 behaved as second-site noncomplementors of zipper. Two of the deficiencies are strong interactors, 17 are intermediate and 28 are weak. Finer genetic mapping reveals that mutations in cytoplasmic tropomyosin and viking (collagen IV) behave as second-site noncomplementors of zipper during leg morphogenesis and that zipper function requires a previously uncharacterized locus, E3.10/J3.8, for leg morphogenesis and viability.  相似文献   

17.
We have expressed useful amounts of three recombinant proteins in a new eukaryotic host/vector system. The cellular slime mold Dictyostelium discoideum efficiently secreted two recombinant products, a soluble form of the normally cell surface associated D. discoideum glycoprotein (PsA) and the heterologous protein glutathione-S-transferase (GST) from Schistosoma japonicum, while the enzyme beta-glucuronidase (GUS) from Escherichia coli was cell associated. Up to 20mg/l of recombinant PsA and 1mg/l of GST were obtained after purification from a standard, peptone based growth medium. The secretion signal peptide was correctly cleaved from the recombinant GST- and PsA-proteins and the expression of recombinant PsA was shown to be stable for at least one hundred generations in the absence of selection.  相似文献   

18.
The recent finding of the 37-collar-spined Echinostoma revolutum in North America prompted rDNA nucleotide sequence comparisons between this worm and the sympatric Echinostoma trivolvis. Three isolates of E. revolutum from distinct sites and 2 isolates of E. trivolvis collected from a single site were used in this analysis. Sequence data were compared to those from previously sequenced members of the 37-collar-spine group. The 3 North American isolates of E. revolutum were found to be identical, but they differed from Eurasian isolates of E. revolutum at 9 of the 1,006 sites sequenced. Further, 1 of the E. trivolvis isolates studied herein was identical to the published sequence for this species, but 6 nucleotide changes were observed in the second E. trivolvis isolate. Restriction fragment length polymorphisms at this locus support the nucleotide differences found between the E. trivolvis isolates. The degree of intraspecific variation detected raises questions regarding the utility of the internal-transcribed spacer regions of the ribosomal DNA repeat for taxonomic diagnosis and in phylogenetic studies for poorly differentiated groups, such as the 37-collar-spined congeners.  相似文献   

19.
SKP1 is involved in the ubiquitination of certain cell cycle and nutritional regulatory proteins for rapid turnover. SKP1 from Dictyostelium has been known to be modified by an oligosaccharide containing Fuc and Gal, which is unusual for a cytoplasmic or nuclear protein. To establish how it is glycosylated, SKP1 labeled with [3H]Fuc was purified to homogeneity and digested with endo-Lys-C. A single radioactive peptide was found after two-dimensional high performance liquid chromatography. Analysis in a quadrupole time-of-flight mass spectrometer revealed a predominant ion with a novel mass. Tandem mass spectrometry analysis yielded a set of daughter ions which identified the peptide and showed that it was modified at Pro-143. A second series of daughter ions showed that Pro-143 was hydroxylated and derivatized with a potentially linear pentasaccharide, Hex-->Hex-->Fuc-->Hex-->HexNAc-->(HyPro). The attachment site was confirmed by Edman degradation. Gas chromatography-mass spectrometry analysis of trimethylsilyl-derivatives of overexpressed SKP1 after methanolysis showed the HexNAc to be GlcNAc. Exoglycosidase digestions of the glycopeptide from normal SKP1 and from a fucosylation mutant, followed by matrix-assisted laser desorption time-of-flight mass spectrometry analysis, showed that the sugar chain consisted of D-Galpalpha1-->6-D-Galpalpha1-->L-Fucpalpha1-->2-D- Galpbeta1--> 3GlcNAc. Matrix-assisted laser-desorption time-of-flight mass spectrometry analysis of all SKP1 peptides resolved by reversed phase-high performance liquid chromatography showed that SKP1 was only partially hydroxylated at Pro-143 and that all hydroxylated SKP1 was completely glycosylated. Thus SKP1 is variably modified by an unusual linear pentasaccharide, suggesting the localization of a novel glycosylation pathway in the cytoplasm.  相似文献   

20.
KAR5 is required for membrane fusion during karyogamy, the process of nuclear fusion during yeast mating. To investigate the molecular mechanism of nuclear fusion, we cloned and characterized the KAR5 gene and its product. KAR5 is a nonessential gene, and deletion mutations produce a bilateral defect in the homotypic fusion of yeast nuclei. KAR5 encodes a novel protein that shares similarity with a protein in Schizosaccharomyces pombe that may play a similar role in nuclear fusion. Kar5p is induced as part of the pheromone response pathway, suggesting that this protein uniquely plays a specific role during mating in nuclear membrane fusion. Kar5p is a membrane protein with its soluble domain entirely contained within the lumen of the endoplasmic reticulum. In pheromone-treated cells, Kar5p was localized to the vicinity of the spindle pole body, the initial site of fusion between haploid nuclei during karyogamy. We propose that Kar5p is required for the completion of nuclear membrane fusion and may play a role in the organization of the membrane fusion complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号