首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
海藻酸钠/聚乙烯醇溶液的性能及静电纺丝   总被引:1,自引:0,他引:1  
将质量分数为2%的海藻酸钠(SA)与质量分数为8%的聚乙烯醇(PVA)按一定体积比混合后进 行静电纺丝,研究了SA与PVA溶液的相容性及SA/PVA共混溶液性能.结果表明:SA与PVA溶液相容;随着PVA含量的增加,SA/PVA共混溶液的粘度、表面张力、电导率则降低,共混溶液的可纺性提高;静电纺丝得到的SA/PVA超细...  相似文献   

2.
将维生素(VC)溶解在质量分数8%的聚乙烯醇(PVA)水溶液中,通过静电纺丝制得PVA/VC共混纳米纤维。分析了VC含量对溶液性能及静电纺丝速度的影响;测试了纤维的形貌结构及力学性能。结果表明:PVA/VC共混溶液属于切力变稀流体;当PVA/VC质量比为100/10或100/20时,共混溶液的电导率和静电纺丝速度较纯PVA溶液明显提高,制得的纳米纤维表面光滑,粗细均匀;与纯PVA纳米纤维比较,其平均直径和拉伸强度降低,断裂伸长率提高。  相似文献   

3.
将不同质量比的聚乙烯醇(PVA)和壳聚糖(CS)溶于甲酸中配制成共混溶液进行静电纺丝,得到PVA/CS共混纤维毡。对纤维毡进行原子力显微镜(AFM)表征、红外光谱分析和吸水性能测试。结果表明:共混溶液中PVA质量分数为8%,CS质量分数为4%时,静电纺丝效果较好,纤维光滑平直,平均直径为307 nm,;红外光谱分析表明,PVA和CS共混时,大分子之间产生了较强的氢键作用,CS原有的结晶结构在一定程度上被破坏;PVA/CS共混纤维毡的吸水量和吸水速率都小于PVA纤维毡。  相似文献   

4.
利用静电纺丝技术制备聚乙烯醇(PVA)纳米纤维材料,通过正交试验调节制备过程中纺丝电压、纺丝距离和纺丝溶液浓度等工艺参数,探究其对PVA纳米纤维直径大小、直径分布以及纤维形貌的影响。结果表明,影响纳米纤维形貌的主要因素排序是纺丝溶液浓度>纺丝距离>纺丝电压,并确定最优水平组合为纺丝电压为20 kV,PVA纺丝溶液浓度为6 %(质量分数,下同),纺丝距离为12 cm。  相似文献   

5.
聚乳酸/聚乙烯醇纳米纤维的制备及结构   总被引:1,自引:0,他引:1  
以二甲基亚砜为溶剂,制备不同配比的聚乳酸(PLLA)和聚乙烯醇(PVA)的混合溶液,静电纺丝制得PLLA/PVA纳米纤维。采用红外光谱仪、原子力显微镜等对PLLA/PVA纳米纤维结构与性能进行了表征。结果表明:PLLA/PVA纳米纤维中PVA上的羟基与PLLA上的羰基形成了氢键,PLLA与PVA之间存在一定的相互作用,但PLLA/PVA纳米纤维存在相分离现象;混合溶液的PLLA质量分数为11%,PVA质量分数为8%时可以得到较好的PLLA/PVA纳米纤维,但PVA质量分数为6%时出现液滴及珠丝,PVA质量分数为4%时,不能制得纳米纤维。  相似文献   

6.
以聚乙烯醇(PVA)为原料、去离子水为溶剂,通过静电纺丝制备PVA纳米纤维膜,利用正交实验探讨静电纺丝过程中纺丝液PVA浓度、纺丝距离、纺丝电压和注射速度对PVA纳米纤维膜形貌及纤维直径的影响,得出制备纤维膜的较佳工艺条件,并分析了纺丝液PVA浓度对纤维膜的力学性能和亲水性能的影响。结果表明:随着纺丝液PVA浓度的增加,PVA纤维的直径逐步变小,直径分布变窄;当纺丝液PVA质量分数为7%、纺丝电压为14 kV、纺丝距离为14 cm、注射速度为0.5 mL/h时,纤维膜的纤维直径最小,为203 nm;正交实验中PVA浓度、纺丝电压、纺丝距离、注射速度4个因素的极差值分别为87.00,49.67,18.33,11.67;纺丝液PVA质量分数从5%增加到7%,纤维膜的断裂强度从2.21 MPa提高至2.81 MPa,断裂伸长率从31.63%提高至56.39%,水接触角从37.7°提高至48.7°。  相似文献   

7.
聚乙烯醇及其共混液的电纺性研究   总被引:5,自引:2,他引:3  
研究了聚乙烯醇(PVA)的浓度、纺丝电压和固化距离对PVA静电纺丝的影响。扫描电镜等结果显示:PVA的浓度(质量体积百分数)为5% ̄8%、纺丝电压为6.6 ̄15kV和固化距离为5 ̄25cm时适合静电纺丝。PVA分别与海藻酸钠、可溶性淀粉和壳聚糖的混合溶液在一定浓度范围内可纺性好,可得到具有较好纤维形态的纤维。  相似文献   

8.
《合成纤维工业》2016,(3):45-47
以聚乙烯醇(PVA)为原料,以芦丁为改性剂,将PVA与芦丁共混于去离子水中,通过静电纺丝制备抗紫外PVA/芦丁纳米纤维膜,并对其性能进行表征。结果表明:静电纺丝工艺条件为电压20 k V,纺丝速度0.5 m L/h,接收距离10 cm,温度30℃;加入少量芦丁,对PVA静电纺丝成纤性无影响,但纤维直径增大,直径均匀性变差;纤维中PVA与芦丁之间存在氢键;相对PVA,芦丁质量分数为4.76%时,PVA/芦丁纳米纤维膜的纤维平均直径为302 nm,抗紫外系数大于40,具有良好的抗紫外性能。  相似文献   

9.
采用静电纺丝法制备不同浓度PVA/SiO_2混合溶液的纤维,通过改变加入二氧化硅溶液质量得到不同比例混合溶液,找到最佳的比例得到最优质的纤维达到改善PVA性能的目的。本实验中共配四组混合溶液进行静电纺丝,结果表明加入二氧化硅溶液质量对PVA/SiO_2混合溶液粘度存在影响。反应过程中黏度变化规律也相似:随着加入二氧化硅质量减少,混合溶液粘度增加,混合溶液纺丝性能得到改善;FT-IR表明:杂化纤维中PVA与SiO_2之间形成化学键结合有游离的基团;XRD分析表明:二氧化硅为非定型;接触角测量表明:复合纤维亲水能力降低;TEM结果表明:随着加入二氧化硅质量增加,纤维表面粒子数也增加,但呈不均匀变化。  相似文献   

10.
以乙酸为溶剂,配置了高密度壳聚糖(HDC)纺丝浆液;以氢氧化钠/乙醇溶液为凝固浴,采用湿法纺丝制备HDC中空纤维;研究了纺丝浆液的流变性能及可纺性,并对HDC-中空纤维的结构与性能进行表征。结果表明:在HDC质量分数为2%~6%,温度20~70℃条件下,HDC纺丝浆液属于剪切变稀的假塑性流体,非牛顿指数小于1.0;HDC质量分数为5%的纺丝浆液在20~30℃下,以质量分数3%的氢氧化钠/乙醇(质量比1/1)作为凝固浴进行湿法纺丝,可纺性良好,得到的HDC中空纤维结构较完善,力学性能较好,纤维线密度为0.27 dtex,断裂强度为0.72 cN/dtex,断裂伸长率为6.09%,模量为6.12 GPa。  相似文献   

11.
将胶原蛋白与聚乙烯醇(PVA)进行共混纺丝,获得了胶原蛋白/PVA复合纤维;研究了胶原蛋白/PVA复合纤维中胶原蛋白含量和染色工艺对复合纤维酸性染料上染的影响;借助紫外可见分光光度计、扫描电镜、纤维电子强力仪等对复合纤维的上染率、截面形貌、力学性能、热水收缩性能等进行了表征.结果表明:胶原蛋白/PVA复合纤维中胶原蛋白...  相似文献   

12.
在低剪切速率下,研究了甲壳胺的浓度、溶液静置时间、溶液温度及溶剂乙酸浓度对甲壳胺/乙酸溶液表观粘度的影响。结果表明:甲壳胺/乙酸溶液的表观粘度随甲壳胺浓度的增加而上升,随溶液温度的上升而降低,随乙酸浓度的增加有所降低。配制甲壳胺/乙酸纺丝原液时,需现用现配,甲壳胺质量分数4.5%,乙酸质量分数2.0%,溶液温度20℃为宜。  相似文献   

13.
采用硝酸对多壁碳纳米管(MWNTs)进行纯化处理,利用表面活性剂十二烷基磺酸钠(SDS)或聚乙烯醇(PVA)对纯化后的MWNTs进行了表面修饰,将修饰后的MWNTs添加到PVA和聚氧化乙烯(PEO)共混水溶液中,通过静电纺丝制备了MWNTs/PVA/PEO复合超细纤维。结果表明:PVA修饰的MWNTs比SDS修饰的MWNTs在PVA/PEO纺丝液中有更好的分散稳定性。随MWNTs添加量的增加,纤维的平均直径减小;当添加PVA修饰的MWNTs质量分数为0.53%时,纤维平均直径达368 nm,且纤维表面光滑、分布均匀。  相似文献   

14.
溶剂对聚乙烯醇纺丝原液及纤维结构和性能的影响   总被引:1,自引:0,他引:1  
采用不同的溶剂溶解高相对分子质量聚乙烯醇(PVA),制备PVA纺丝原液及初生纤维,对其结构和性能进行了研究。结果表明:二甲基亚砜(DMSO)/H2O溶剂中DMSO的质量分数为92%时,对PVA的的溶解性能最好。相同条件下,与DMSO相比,N-甲基-N-氧化吗啉(NMMO)使PVA溶液粘度降低更快;DMSO/NMMO.2.5H2O混合溶剂中,当NMMO.2.5H2O质量分数为15%时,PVA纺丝的凝固性能较好,其初生纤维的结晶度较低。  相似文献   

15.
在胶原蛋白与聚乙烯醇(PVA)复合后的溶液中加入少量质量分数为0.05%~0.25%的碳纳米管,通过湿法纺丝制得PVA/胶原蛋白/碳纳米管复合纤维,研究了复合纤维的结构和性能。结果表明:碳纳米管与PVA和胶原蛋白有较好的相容性,在复合纤维中分散比较均匀。添加质量分数为0.25%碳纳米管时,复合纤维结晶度提高了37.62%,水中软化点提高了5℃,回潮率从11.50%下降到10.83%;加入质量分数为0.05%的碳纳米管时,复合纤维的断裂强度提高57.07%。  相似文献   

16.
用氯乙酸改性处理壳聚糖(CS)制备羧甲基壳聚糖(CMCS),采用湿法纺丝法制备CMCS纤维,考察了纺丝原液浓度、醋酸水溶液体积分数、凝固时间对CMCS纤维力学性能的影响;通过傅里叶变换红外光谱、X射线衍射以及热失重分析对CS,CMCS及其纤维进行表征。结果表明:CMCS发生了羧甲基取代,同时CMCS结晶度降低;CMCS纤维结构中含有结合水,热分解温度为270℃;纺丝原液CMCS的质量分数为50%,醋酸水溶液的体积分数为2%、凝固时间为12 min时,CMCS纤维的断裂强度达0.644 cN/dtex。  相似文献   

17.
将聚乙二醇(PEG)与聚乙烯醇(PVA)溶液混合,加入丁烷四羧酸(BTCA)作为交联剂配制纺丝原液,采用干法纺丝制得BTCA改性PEG/PVA相变储能纤维;研究了BTCA含量、热处理条件对交联程度的影响,并对纤维的结构、形态、储能性能及力学性能进行了分析。结果表明:在热处理温度为180℃,热处理时间为12 min时,纤维可达到良好的交联效果,纤维的交联程度随BTCA含量的增加呈上升趋势,BTCA质量分数为3%时达到平衡;改性纤维中PEG以独立微相区形式存在,而经热处理后可保留在交联网络中;热处理后的改性纤维力学性能随BTCA含量增加而提高,储能性能也增加且稳定;当BTCA质量分数为6%时,热处理后的纤维断裂强度达3.49 cN/dtex,再经沸水处理后纤维相变焓值可达23.01 J/g,PEG保留率达80%。  相似文献   

18.
尿素增溶纤维素氨基甲酸酯的可纺性研究   总被引:1,自引:0,他引:1  
探索了尿素对纤维素氨基甲酸酯(CC)/氢氧化钠溶液(CC溶液)的增溶作用,考察了不同浓度CC溶液的流变性能,选择CC质量分数为7%的溶液经过滤、脱泡后,以7%的稀硫酸为凝固浴进行溶液纺丝。结果表明:尿素增溶效果显著并提高了CC溶液的稳定性。经尿素增溶的CC溶液属于典型的切力变稀型流体,CC溶液经纺丝可得到直径为13~16μm的长丝,其纤维干态拉伸强度可达325~640MPa,断裂伸长率为10%~18%。  相似文献   

19.
Fully-hydrolyzed poly (vinyl alcohol) (PVA) nanofibers were successfully electrospun from aqueous solutions of PVA in the presence of acetic acid. A continuous spinning of uniform PVA nanofibers proceeded by the addition of acetic acid due to the changes of electronic conductivity and surface tension of aqueous solution of PVA. When cross-linking agent 1 was added to aqueous solution of PVA and subsequent thermal treatment of as-spun nanofibers, chemically cross-linked PVA nanofibers were achieved to resist disintegration in contact with hot water and the tensile mechanical property of nanofiber non-wovens was greatly improved by the formation of cross-linking points. Magnetite was deposited uniformly onto the hydrophilic surface of cross-linked PVA nanofibers and the resulted nanofibers decorated with magnetite showed a magnetic responsiveness. The deposition of magnetite on the PVA nanofibers can generate self-standing magnetic non-wovens.  相似文献   

20.
分别用甲酸、六氟异丙醇(HFIP)或甲酸与醋酸(HAc)、N,N-二甲基甲酰胺(DMF)、HFIP的混合溶剂溶解聚己内酰胺(PA6),通过静电纺丝法制备了纳米级的PA6纤维。结果表明:甲酸作为溶剂时,PA6可纺丝溶液质量分数为8%~22%,所纺出的PA6纤维直径为50~300 nm;HFIP作为溶剂时PA6可纺丝溶液质量分数为8%~18%,纤维直径为50~500 nm;甲酸与HFIP,HAc,DMF的混合溶剂对纺丝状态及纤维直径分布的影响均表现为随第2种溶剂的加入,纤维直径的分布变广,平均直径增加;HAc的加入能提高PA6溶液的可纺性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号