首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho-associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and approximately 30 and approximately 100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase-dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase-dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.  相似文献   

2.
The band 4.1 domain was first identified in the red blood cell protein band 4.1, and subsequently in ezrin, radixin, and moesin (ERM proteins) and other proteins, including tumor suppressor merlin/schwannomin, talin, unconventional myosins VIIa and X, and protein tyrosine phosphatases. Recently, the presence of a structurally related domain has been demonstrated in the N-terminal region of two groups of tyrosine kinases: the focal adhesion kinases (FAK) and the Janus kinases (JAK). Additional proteins containing the 4.1/JEF (JAK, ERM, FAK) domain include plant kinesin-like calmodulin-binding proteins (KCBP) and a number of uncharacterized open reading frames identified by systematic DNA sequencing. Phylogenetic analysis of amino acid sequences suggests that band 4.1/JEF domains can be grouped in several families that have probably diverged early during evolution. Hydrophobic cluster analysis indicates that the band 4.1/JEF domains might consist of a duplicated module of approximately 140 residues and a central hinge region. A conserved property of the domain is its capacity to bind to the membrane-proximal region of the C-terminal cytoplasmic tail of proteins with a single transmembrane segment. Many proteins with band 4.1/JEF domains undergo regulated intra- or intermolecular homotypic interactions. Additional properties common to band 4.1/JEF domains of several proteins are binding of phosphoinositides and regulation by GTPases of the Rho family. Many proteins with band 4. 1/JEF domains are associated with the actin-based cytoskeleton and are enriched at points of contact with other cells or the extracellular matrix, from which they can exert control over cell growth. Thus, proteins with band 4.1/JEF domain are at the crossroads between cytoskeletal organization and signal transduction in multicellular organisms. Their importance is underlined by the variety of diseases that can result from their mutations.  相似文献   

3.
We examined regions of human lamins A and C involved in binding to surfaces of mitotic chromosomes. An Escherichia coli expression system was used to produce full-length lamin A and lamin C, and truncated lamins retaining the central alpha-helical rod domain (residues 34-388) but lacking various amounts of the amino-terminal 'head' and carboxy-terminal 'tail' domains. We found that lamin A, lamin C and lamin fragments lacking the head domain and tail sequences distal to residue 431 efficiently assembled into paracrystals and strongly associated with mitotic chromosomes. Furthermore, the lamin rod domain also associated with chromosomes, although efficient chromosome coating required the pH 5-6 conditions needed to assemble the rod into higher order structures. Biochemical assays showed that chromosomes substantially reduced the critical concentration for assembly of lamin polypeptides into pelletable structures. Association of the lamin rod with chromosomes was abolished by pretrypsinization of chromosomes, and was not seen for vimentin (which possesses a similar rod domain). These data demonstrate that the alpha-helical rod of lamins A and C contains a specific chromosome binding site. Hence, the central rod domain of intermediate filament proteins can be involved in interactions with other cellular structures as well as in filament assembly.  相似文献   

4.
ERM (ezrin, radixin and moesin) proteins function as linkers between the actin cytoskeleton and the plasma membrane. In addition to this structural role, these proteins are highly regulatable making them ideal candidates to mediate important physiological events such as adhesion and membrane morphology and to control formation and breakdown of membrane-cytoskeletal junctions. Recently, a direct interaction in vitro has been demonstrated between ERM proteins and the hyaluronan receptor, CD44. We have mapped the ezrin-binding site to two clusters of basic amino acids in a membrane-proximal 9 amino-acid region within the CD44 cytoplasmic domain. To investigate the functional importance of this interaction in vivo, we created a number of mutations within full-length CD44 and expressed these mutants in human melanoma cells. We demonstrate here that mutations within the ezrin-binding site do not disrupt the plasma membrane localization of CD44 and, in addition, that this region is not required to mediate efficient hyaluronan binding. These studies suggest that ERM proteins mediate the outside-in, rather than inside-out, signalling of adhesion receptors.  相似文献   

5.
Moesin, one of the ERM (ezrin; radixin; moesin) family members, is directly associated with the cytoplasmic domain of CD44, which is now thought to be related to the metastatic potential of tumor cells. Using immunohistochemistry we investigated the expression of moesin in normal epidermis and various kinds of epithelial skin tumors: squamous cell carcinoma, verrucous carcinoma, Bowen's disease, solar keratosis, keratoacanthoma, basal cell carcinoma, and extramammary Paget's disease. Normal skin showed positive epidermal staining for moesin with the exception of the stratum corneum. The expression of moesin varied with the type of skin tumor. In basal cell carcinoma, Bowen's disease, and extramammary Paget's disease, moesin expression was either faint or negative. In contrast to Bowen's disease, invasive squamous cell carcinoma showed more intense and heterogeneous staining of the cytoplasm and the cell membrane. Verrucous carcinoma was weakly positive, with a tendency for the moesin to be distributed in the cell membrane. The staining pattern of moesin varied among the different kinds of epithelial skin tumors, and its expression was generally similar to that of the standard form of CD44. These results suggest that moesin is closely inter-related with CD44 in epithelial skin cells as seen in other cellular systems, and that the variable pattern of moesin staining among the skin tumor cells could reflect expression disorders associated with the transformation.  相似文献   

6.
Ezrin, a widespread protein present in actin-containing cell-surface structures, is a substrate of some protein tyrosine kinases. Based on its primary and secondary structure similarities with talin and band 4.1 it has been suggested that this protein could play a role in linking the cytoskeleton to the plasma membrane (Gould, K.L., A. Bretscher, F.S. Esch, and T. Hunter. 1989. EMBO (Eur. Mol. Biol. Organ.), J. 8:4133-4142; Turunen, O., R. Winqvist, R. Pakkanen, K.-H. Grzeschik, T. Wahlstr?m, and A. Vaheri. 1989. J. Biol. Chem. 264:16727-16732). To test this hypothesis, we transiently expressed the complete human ezrin cDNA, or truncated cDNAs encoding the amino- and carboxy-terminal domains of the protein, in CV-1 cells. Protein epitope tagging was used to unambiguously determine the subcellular distribution of the protein encoded by the transfected cDNA. We show that this protein is concentrated underneath the dorsal plasma membrane in all actin-containing structures and is partially detergent insoluble. The amino-terminal domain displays the same localization but is readily extractable by nonionic detergent. The carboxy-terminal domain colocalizes with microvillar actin filaments as well as with stress fibers and remains associated with actin filaments after detergent extraction, and with disorganized actin structures after cytochalasin D treatment. Our results clearly demonstrate that ezrin interacts with membrane-associated components via its amino-terminal domain, and with the cytoskeleton via its carboxy-terminal domain. The amino-terminal domain could include the main determinant that restricts the entire protein to the cortical cytoskeleton in contact with the dorsal plasma membrane and its specialized microdomains such as microvilli, microspikes and lamellipodia.  相似文献   

7.
8.
Members of the ezrin-radixin-moesin (ERM) family of membrane-cytoskeletal linking proteins have NH2- and COOH-terminal domains that associate with the plasma membrane and the actin cytoskeleton, respectively. To search for ERM binding partners potentially involved in membrane association, tissue lysates were subjected to affinity chromatography on the immobilized NH2-terminal domains of ezrin and moesin, which comprise the ezrin-radixin-moesin-association domain (N-ERMAD). A collection of polypeptides at 50-53 kD from human placenta and at 58-59 kD from bovine brain bound directly to both N-ERMADs. The 50-53-kD placental proteins migrated as a major 50-kD species after phosphatase treatment, indicating that the heterogeneity is due to different phosphorylation states. We refer to these polypeptides as ERM-binding phosphoprotein 50 (EBP50). Sequence analysis of human EBP50 was used to identify an approximately 2-kb human cDNA that encodes a 357-residue polypeptide. Recombinant EBP50 binds tightly to the N-ERMADs of ezrin and moesin. Peptide sequences from the brain candidate indicated that it is closely related to EBP50. EBP50 has two PSD-95/DlgA/ZO-1-like (PDZ) domains and is most likely a homologue of rabbit protein cofactor, which is involved in the protein kinase A regulation of the renal brush border Na+/H+ exchanger. EBP50 is widely distributed in tissues, and is particularly enriched in those containing polarized epithelia. Immunofluorescence microscopy of cultured cells and tissues revealed that EBP50 colocalizes with actin and ezrin in the apical microvilli of epithelial cells, and immunoelectron microscopy demonstrated that it is specifically associated with the microvilli of the placental syncytiotrophoblast. Moreover, EBP50 and ezrin can be coimmunoprecipitated as a complex from isolated human placental microvilli. These findings show that EBP50 is a physiologically relevant ezrin binding protein. Since PDZ domains are known to mediate associations with integral membrane proteins, one mode of membrane attachment of ezrin is likely to be mediated through EBP50.  相似文献   

9.
The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeast Saccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother-daughter connection during cell cycle progression.  相似文献   

10.
Shigella flexneri is a gram-negative bacterium that causes diarrhea and dysentery by invasion and spread through the colonic epithelium. Bacteria spread by assembling actin and other cytoskeletal proteins of the host into "actin tails" at the bacterial pole; actin tail assembly provides the force required to move bacteria through the cell cytoplasm and into adjacent cells. The 120-kDa S. flexneri outer membrane protein IcsA is essential for actin assembly. IcsA is anchored in the outer membrane by a carboxy-terminal domain (the beta domain), such that the amino-terminal 706 amino acid residues (the alpha domain) are exposed on the exterior of the bacillus. The alpha domain is therefore likely to contain the domains that are important to interactions with host factors. We identify and characterize a domain of IcsA within the alpha domain that bears significant sequence similarity to two repeated domains of rickettsial OmpA, which has been implicated in rickettsial actin tail formation. Strains of S. flexneri and Escherichia coli that carry derivatives of IcsA containing deletions within this domain display loss of actin recruitment and increased accessibility to IcsA-specific antibody on the surface of intracytoplasmic bacteria. However, site-directed mutagenesis of charged residues within this domain results in actin assembly that is indistinguishable from that of the wild type, and in vitro competition of a polypeptide of this domain fused to glutathione S-transferase did not alter the motility of the wild-type construct. Taken together, our data suggest that the rickettsial homology domain of IcsA is required for the proper conformation of IcsA and that its disruption leads to loss of interactions of other IcsA domains within the amino terminus with host cytoskeletal proteins.  相似文献   

11.
Radixin is a cytoskeletal protein that may be important in linking actin to the plasma membrane. Recent cloning of the murine and porcine radixin cDNAs revealed a protein highly homologous to ezrin and moesin. We have cloned and sequenced the human radixin cDNA and found the predicted amino acid sequence for the human protein to be nearly identical to those predicted for radixin in the two other species. By Southern analyses of Chinese hamster x human somatic cell hybrid DNA and of PCR products derived from hybrids, the coding gene (RDX) was mapped to 11q. Fluorescence chromosomal in situ hybridization with a cDNA plasmid further localized this gene to band 11q23. However, PCR amplification with "radixin-specific" primers on the hybrid DNA panel yielded an additional, very similar DNA sequence that was further characterized by direct sequencing of PCR products. This sequence represents a truncated version and the respective locus (RDXP2) was assigned to Xp21.3. Furthermore, by employing a different set of primers, a third sequence was found that was 90% identical to the radixin sequence but contained termination codons and seemed to lack introns. This pseudogene (RDXP1) was mapped to 11p by Southern and PCR analyses.  相似文献   

12.
Merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene, is a member of the protein 4.1 superfamily that is most closely related to ezrin, radixin, and moesin (ERM). NF2 is a dominantly inherited disease characterized by the formation of bilateral acoustic schwannomas and other benign tumors associated with the central nervous system. To understand its cellular functions, we are studying a Merlin homologue in Drosophila. As is the case for NF2 tumors, Drosophila cells lacking Merlin function overproliferate relative to their neighbors. Using in vitro mutagenesis, we define functional domains within Merlin required for proper subcellular localization and for genetic rescue of lethal Merlin alleles. Remarkably, the results of these experiments demonstrate that all essential genetic functions reside in the plasma membrane- associated NH2-terminal 350 amino acids of Merlin. Removal of a seven-amino acid conserved sequence within this domain results in a dominant-negative form of Merlin that is stably associated with the plasma membrane and causes overproliferation when expressed ectopically in the wing. In addition, we provide evidence that the COOH-terminal region of Merlin has a negative regulatory role, as has been shown for ERM proteins. These results provide insights into the functions and functional organization of a novel tumor suppressor gene.  相似文献   

13.
We studied the immunohistochemical localization of CD44, hyaluronate receptor, and the ezrin-radixin-moesin (ERM) family, actin binding proteins, in bone cells using confocal laser scanning microscopy and transmission electron microscopy to clarify the mechanism of the organization of their cytoskeletons. In osteoclasts, intense immunoreactivity to CD44 could be detected on their basolateral plasma membranes. There was less reactivity observed in the area of the plasma membrane in direct contact with the bone surface. The immunogold electron-microscopical method revealed that CD44 was mainly localized on the microvilli of the basolateral plasma membrane. The plasma membrane of the clear zone and the ruffled border were not immunolabeled with CD44. As for the ERM family, the basolateral plasma membrane of osteoclasts was stained with antimoesin monoclonal antibody, but not with ezrin or radixin. In osteoblasts attached to the bone surface, immunoreactivity to CD44 was restricted to their cytoplasmic processes. They showed immunoreactivities to radixin and moesin on the cytoplasmic side of their plasma membrane when in contact with each other. However, although osteocytes in the bone matrix demonstrate an intense immunolabeling with CD44 on their plasma membrane, they scarcely show immunoreactivity to the ERM family. These findings suggest that: (1) the CD44-moesin-actin filament system is involved in the organization of cytoskeletons in the basolateral plasma membrane of osteoclasts; and (2) other mechanisms, rather than the CD44 and the ERM family, may be involved in the cells of osteoblast lineage.  相似文献   

14.
Myosin heavy chain kinase A (MHCK A) participates in the regulation of cytoskeletal myosin assembly in Dictyostelium, driving filament disassembly via phosphorylation of sites in the myosin tail. MHCK A contains an amino-terminal coiled-coil domain, a novel central catalytic domain, and a carboxyl-terminal domain containing a 7-fold WD repeat motif. We have overexpressed MHCK A truncation constructs to clarify the roles of each of these domains. Recombinant full-length MHCK A, MHCK A lacking the predicted coiled-coil domain, and MHCK A lacking the WD repeat domain were expressed at high levels in Dictyostelium cells lacking endogenous MHCK A. Biochemical analysis of the purified proteins demonstrates that the putative coiled-coil domain is responsible for the oligomerization of the MHCK A holoenzyme. Removal of the WD repeat domain had no effect on catalytic activity toward a synthetic peptide, but did result in a 95% loss of protein kinase activity when native myosin filaments were used as the substrate. Cellular analysis confirms that the same severe loss of activity against myosin occurs in vivo when the WD repeat domain is eliminated. These results suggest that the WD repeat domain of MHCK A serves to target this enzyme to its physiological substrate.  相似文献   

15.
16.
The ERM proteins--ezrin, radixin, and moesin--are key players in membrane-cytoskeleton interactions. In insect cells infected with recombinant baculoviruses, amino acids 1-115 of ezrin were shown to inhibit an actin- and tubulin-dependent cell-extension activity located in ezrin C-terminal domain (ezrin310-586), whereas full-length ezrin1-586 did not induce any morphological change. To refine the mapping of functional domains of ezrin, 30 additional constructs were overexpressed in Sf9 cells, and the resulting effect of each was qualitatively and semiquantitatively compared. The removal of amino acids 13-30 was sufficient to release a cell-extension phenotype. This effect was abrogated if the 21 distal-most C-terminal amino acids were subsequently deleted (ezrin31-565), confirming the existence of a head-to-tail regulation in the whole molecule. Surprisingly, the deletion in full-length ezrin of the same 21 amino acids provided strong cell-extension competence to ezrin1-565, and this property was recovered in N-terminal constructs as short as ezrin1-310. Within ezrin1-310, amino acid sequences 13-30 and 281-310 were important determinants and acted in cooperation to induce cytoskeleton mobilization. In addition, these same residues are part of a new actin-binding site characterized in vitro in ezrin N-terminal domain.  相似文献   

17.
The Rho GDP dissociation inhibitor (GDI) forms a complex with the GDP-bound form of the Rho family small G proteins and inhibits their activation. The GDP-bound form complexed with Rho GDI is not activated by the GDP/GTP exchange factor for the Rho family members, suggesting the presence of another factor necessary for this activation. We have reported that the Rho subfamily members regulate the ezrin/radixin/moesin (ERM)-CD44 system, implicated in reorganization of actin filaments. Here we report that Rho GDI directly interacts with ERM, initiating the activation of the Rho subfamily members by reducing the Rho GDI activity. These results suggest that ERM as well as Rho GDI and the Rho GDP/GTP exchange factor are involved in the activation of the Rho subfamily members, which then regulate reorganization of actin filaments through the ERM system.  相似文献   

18.
19.
We and others have shown previously that progesterone receptors (PR) form homodimers in solution in the absence of DNA and that dimers are the preferential form of receptor that binds with high affinity to target DNA. To determine the sequence regions involved in solution homodimerization, wild type PR and truncated PR proteins were expressed in an insect baculovirus system. The expression constructs included the ligand-binding domain [LBD, amino acids (aa) 688-933], the LBD plus hinge (hLBD, aa 634-933), the hLBD plus the DNA-binding domain (DhLBD, aa 538-933), and the full- length A and B isoforms of PR. PR-PR interactions were detected by three methods, coimmunoprecipitation of the PR fragments with full-length PR-A, pull-down of PR-polypeptides with polyhistidine-tagged versions of the same polypeptides immobilized to metal affinity columns and cooperative ligand-binding assays (Hill coefficient, n(H) > 1 indicating PR-PR interaction). By all three assays, the LBD alone was not sufficient to mediate protein-protein interaction. However, the LBD did exhibit other properties ascribed to this domain, including binding to steroids with a relatively good affinity and specificity, ligand-induced conformational changes at the carboxyl terminus tail and binding of heat shock protein 90 and its dissociation in response to hormone. Thus, failure of the expressed LBD to mediate dimerization does not appear to be due to an extensively misfolded or unstable polypeptide. The minimal carboxyl-terminal fragment capable of mediating PR-PR interaction was the hLBD construct. However, by immobilized metal affinity chromatography assay, self-association of PR-A was 3.5-fold more efficient than that of either the DhLBD or hLBD constructs. An expressed amino-terminal domain (aa 165-535) lacking the DNA-binding domain, hinge, and LBD was found to physically associate with PR-A or with another amino-terminal fragment lacking the LBD, but retaining the DNA-binding domain. These results provide evidence for direct amino-terminal interactions in the more efficient PR-PR interaction exhibited by wild-type PR-A, as compared with DhLBD and hLBD constructs. The overall results of this paper are consistent with the conclusion that the carboxyl-terminal LBD is not sufficient for mediating PR dimerization and that multiple regions, including the hinge and amino-terminal sequences, contribute either directly or indirectly to homodimerization of PR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号