首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thuja sutchuenensis Franch. is a critically endangered plant endemic to the North-East Chongqing, China. Genetic variation was studied to assess the distribution of genetic diversity within and among seven populations from the single remnant locations, using inter-simple sequence repeat (ISSR) markers. A total of 15 primers generated 310 well defined bands, with an average of 20.7 bands per primer. The seven populations revealed a relatively high level of genetic diversity in the species. The percentage of polymorphic bands, Nei’s gene diversity and Shannon’s information index at the population and species level were 76.1%, 0.155, 0.252 and 100%, 0.165, 0.295, respectively. A low level of genetic differentiation among populations (GST = 0.102), in line with the results of Analyses of Molecular Variance (AMOVA), and a high level of gene flow (Nm = 4.407) were observed. Both the Unweighted Pair Group Method with Arithmatic Mean (UPGMA) cluster analysis and Principal Coordinates Analysis (PCoA) supported the grouping of all seven populations into two groups. In addition, Mantel test revealed no significant correlation between genetic and geographical distances (r = 0.329, p = 0.100). The low genetic differentiation among populations implies that the conservation efforts should aim to preserve all the extant populations of this endangered species.  相似文献   

2.
The genetic diversity and population structure of Salvia lachnostachys Benth were assessed. Inter Simple Sequence Repeat (ISSR) molecular markers were used to investigate the restricted distribution of S. lachnostachys in Parana State, Brazil. Leaves of 73 individuals representing three populations were collected. DNA was extracted and submitted to PCR-ISSR amplification with nine tested primers. Genetic diversity parameters were evaluated. Our analysis indicated 95.6% polymorphic loci (stress value 0.02) with a 0.79 average Simpson’s index. The Nei-Li distance dendrogram and principal component analysis largely recovered the geographical origin of each sample. Four major clusters were recognized representing each collected population. Nei’s gene diversity and Shannon’s information index were 0.25 and 0.40 respectively. As is typical for outcrossing herbs, the majority of genetic variation occurred at the population level (81.76%). A high gene flow (Nm = 2.48) was observed with a correspondingly low fixation index. These values were generally similar to previous studies on congeneric species. The results of principal coordinate analysis (PCA) and of arithmetic average (UPGMA) were consistent and all three populations appear distinct as in STRUCTURE analysis. In addition, this analysis indicated a majority intrapopulation genetic variation. Despite the human pressure on natural populations our study found high levels of genetic diversity for S. lachnostachys. This was the first molecular assessment for this endemic species with medicinal proprieties and the results can guide for subsequent bioprospection, breeding programs or conservation actions.  相似文献   

3.
Knowledge about the population genetic variation of the endangered orchid, Cypripedium japonicum, is conducive to the development of conservation strategies. Here, we examined the levels and partitioning of inter-simple sequence repeat (ISSR) diversity (109 loci) in five populations of this orchid to gain insight into its genetic variation and population structure in Eastern and Central China. It harbored considerably lower levels of genetic diversity both at the population (percentage of polymorphic loci (PPL) = 11.19%, Nei’s gene diversity (H) = 0.0416 and Shannon’s information index (I) = 0.0613) and species level (PPL = 38.53%, H = 0.1273 and I = 0.1928) and a significantly higher degree of differentiation among populations (the proportion of the total variance among populations (Φpt) = 0.698) than those typical of ISSR-based studies in other orchid species. Furthermore, the Nei’s genetic distances between populations were independent of the corresponding geographical distances. Two main clusters are shown in an arithmetic average (UPGMA) dendrogram, which is in agreement with the results of principal coordinate analysis (PCoA) analysis and the STRUCTURE program. In addition, individuals within a population were more similar to each other than to those in other populations. Based on the genetic data and our field survey, the development of conservation management for this threatened orchid should include habitat protection, artificial gene flow and ex situ measures.  相似文献   

4.
The genetic diversity and population genetic structure of 252 accessions from 21 Prunus sibirica L. populations were investigated using 10 ISSR, SSR, and SRAP markers. The results suggest that the entire population has a relatively high level of genetic diversity, with populations HR and MY showing very high diversity. A low level of inter-population genetic differentiation and a high level of intra-population genetic differentiation was found, which is supported by a moderate level of gene flow, and largely attributable to the cross-pollination and self-incompatibility reproductive system. A STRUCTURE (model-based program) analysis revealed that the 21 populations can be divided into two main groups, mainly based on geographic differences and genetic exchanges. The entire wild Siberia apricot population in China could be divided into two subgroups, including 107 accessions in subgroup (SG) 1 and 147 accessions in SG 2. A Mantel test revealed a significant positive correlation between genetic and geographic distance matrices, and there was a very significant positive correlation among three marker datasets. Overall, we recommend a combination of conservation measures, with ex situ and in situ conservation that includes the construction of a core germplasm repository and the implement of in situ conservation for populations HR, MY, and ZY.  相似文献   

5.
Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260–1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53–0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars.  相似文献   

6.
Bermudagrass (Cynodon spp.) is a major turfgrass for home lawns, public parks, golf courses and sport fields and is known to have originated in the Middle East. Morphological and physiological characteristics are not sufficient to differentiate some bermudagrass genotypes because the differences between them are often subtle and subjected to environmental influences. In this study, twenty seven bermudagrass accessions and introductions, mostly from different parts of Iran, were assayed by inter-simple sequence repeat (ISSR) markers to differentiate and explore their genetic relationships. Fourteen ISSR primers amplified 389 fragments of which 313 (80.5%) were polymorphic. The average polymorphism information content (PIC) was 0.328, which shows that the majority of primers are informative. Cluster analysis using the un-weighted paired group method with arithmetic average (UPGMA) method and Jaccard's similarity coefficient (r = 0.828) grouped the accessions into six main clusters according to some degree to geographical origin, their chromosome number and some morphological characteristics. It can be concluded that there exists a wide genetic base of bermudograss in Iran and that ISSR markers are effective in determining genetic diversity and relationships among them.  相似文献   

7.
Brassica carinata (BBCC, 2n = 34) is commonly known as Ethiopian mustard, Abyssinian mustard, or carinata. Its excellent agronomic traits, including resistance to biotic and abiotic stresses, make it a potential genetic donor for interspecific hybridization. Myzus persicae (green peach aphid, GPA) is one of the most harmful pests of Brassica crops, significantly effecting the yield and quality. However, few aphid-resistant Brassica crop germplasms have been utilized in breeding practices, while the underlying biochemical basis of aphid resistance still remains poorly understood. In this study, we examined the genetic diversity of 75 B. carinata accessions and some plant characteristics that potentially contribute to GPA resistance. Initially, the morphological characterization showed abundant diversity in the phenotypic traits, with the dendrogram indicating that the genetic variation of the 75 accessions ranged from 0.66 to 0.98. A population structure analysis revealed that these accessions could be grouped into two main subpopulations and one admixed group, with the majority of accessions (86.67%) clustering in one subpopulation. Subsequently, there were three GPA-resistant B. carinata accessions, BC13, BC47, and BC51. The electrical penetration graph (EPG) assay detected resistance factors in the leaf mesophyll tissue and xylem. The result demonstrated that the Ethiopian mustard accessions were susceptible when the phloem probing time, the first probe time, and the G-wave time were 20.51–32.51 min, 26.36–55.54 s, and 36.18–47.84 min, respectively. In contrast, resistance of the Ethiopian mustard accessions was observed with the phloem probing time, the first probe time, and G-wave time of 41.18–70.78 min, 181.07–365.85 s, and 18.03–26.37 min, respectively. In addition, the epidermal characters, leaf anatomical structure, glucosinolate composition, defense-related enzyme activities, and callose deposition were compared between the resistant and susceptible accessions. GPA-resistant accessions had denser longitudinal leaf structure, higher wax content on the leaf surface, higher indole glucosinolate level, increased polyphenol oxidase (PPO) activity, and faster callose deposition than the susceptible accessions. This study validates that inherent physical and chemical barriers are evidently crucial factors in the resistance against GPA infestation. This study not only provide new insights into the biochemical basis of GPA resistance but also highlights the GPA-resistant B. carinata germplasm resources for the future accurate genetic improvement of Brassica crops.  相似文献   

8.
Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State) grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l.) using ten inter-simple sequence repeats (ISSR) markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42) and polymorphism reached the top value at the middle altitude (% p = 88.57). Analysis of molecular variance (AMOVA) and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA) dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.  相似文献   

9.
Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP.  相似文献   

10.
Though the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) was introduced into China more than 60 years ago, the genetic diversity and structure of this exotic insect pest and virus vector have not been studied. To investigate the population genetic characteristics of this invasive species and to identify potential invasion routes, the genetic diversity and population structure of 17 collections of T. vaporariorum from nine provinces in China were analyzed using seven microsatellite loci. The results of the analyses indicated that the genetic diversity for the populations examined from the four provinces: Jilin, Ningxia, Guizhou and Qinghai, was lower than the genetic diversity of populations from the five provinces: Yunnan, Shandong, Shanxi, Liaoning, and Gansu. The T. vaporariorum populations analyzed in this study grouped as two distinct genetic clusters based on the analysis using STRUCTURE, whereas, 8 clusters were identified based on the BAPS analysis. Of the 136 genetic distance (Fst) values, 128 (94%) were associated with a significant exact test. There was a significant relationship between Fst and geographical distance. These results demonstrate that populations of T. vaporariorum in China exhibit significant genetic differentiation, indicating the likelihood that multiple introductions of T. vaporariorum into China have occurred. Also, the populations collected from the provinces of Jilin, Ningxia, Guizhou and Qinghai appear to represent secondary introductions originating from other Chinese provinces.  相似文献   

11.
Wild soybean (Glycine soja Sieb. et Zucc) is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs) and five chloroplast microsatellite markers (cpSSRs) to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY) was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC) and north China (NC), and the other including northeastern China (NEC), Japan, Korea, MDRY, south China (SC) and southwestern China (SWC). Contrib analyses showed that southwestern China makes the greatest contribution to the total diversity and allelic richness, and is worthy of being given conservation priority.  相似文献   

12.
The variable domain 1 (VD1) domain of the control region and a small segment of the rrnaL gene of the F mtDNA type were sequenced and analyzed in 174 specimens of Mytilus galloprovincialis. Samples were collected from eight locations in four Central-Eastern (CE) Mediterranean countries (Italy, Croatia, Greece and Turkey). A new primer, specific for the F mtDNA type, was designed for the sequencing procedure. In total 40 different haplotypes were recorded, 24 of which were unique. Aside from the two populations situated in Thermaikos gulf (Northern Aegean, Greece), relatively high levels of haplotype and nucleotide diversity were estimated for both Central and Eastern Mediterranean populations. Eight out of the 40 haplotypes were shared by at least three populations while two of them were found in all populations. ΦST and cluster analysis revealed lack of structuring among CE Mediterranean populations with the exception of those located at the Sea of Marmara and Croatian coast which were highly differentiated. Apart from the species’ inherit dispersal ability, anthropogenic activities, such as the repeated translocations of mussel spat, seem to have played an important role in shaping the current genetic population structure of CE M. galloprovincialis mussels.  相似文献   

13.
Biomarker research across the health-to-disease continuum is being increasingly applied. We applied blood-based metabolomics in order to identify patient clusters with a first demyelinating episode, and explored the prognostic potential of the method by thoroughly characterizing each cluster in terms of clinical, laboratory and MRI markers of established prognostic potential for Multiple Sclerosis (MS). Recruitment consisted of 11 patients with Clinically Isolated Syndrome (CIS), 37 patients with a first demyelinating episode in the context of Relapsing-Remitting MS (RRMS) and 11 control participants. Blood-based metabolomics and hierarchical clustering analysis (HCL) were applied. Constructed OPLS-DA models illustrated a discrimination between patients with CIS and the controls (p = 0.0014), as well as between patients with RRMS and the controls (p = 1 × 10−5). Hierarchical clustering analysis (HCL) for patients with RRMS identified three clusters. RRMS-patients-cluster-3 exhibited higher mean cell numbers in the Cerebro-spinal Fluid (CSF) compared to patients with CIS (18.17 ± 6.3 vs. 1.09 ± 0.41, p = 0.004). Mean glucose CSF/serum ratio and infratentorial lesion burden significantly differed across CIS- and HCL-derived RRMS-patient clusters (F = 14.95, p < 0.001 and F = 6.087, p = 0.002, respectively), mainly due to increased mean values for patients with RRMS-cluster-3. HCL discriminated a cluster of patients with a first demyelinating episode in the context of RRMS with increased disability, laboratory findings linked with increased pathology burden and MRI markers of poor prognosis.  相似文献   

14.
The relationships among 55 wheat accessions (47 accessions collected from Iran and eight accessions provided by the Institute of Plant Biology of the University of Zurich, Switzerland) belonging to eight species carrying A genome (Triticum monococcum L., T. boeoticum Boiss., T. urartu Tumanian ex Gandilyan, T. durum Desf., T. turgidum L., T. dicoccum Schrank ex Schübler, T. dicoccoides (Körn. ex Asch. & Graebner) Schweinf. and T. aestivum L.) were evaluated using 31 A genome specific microsatellite markers. A high level of polymorphism was observed among the accessions studied (PIC = 0.77). The highest gene diversity was revealed among T. durum genotypes, while the lowest genetic variation was found in T. dicoccoides accessions. The analysis of molecular variance (AMOVA) showed a significant genetic variance (75.56%) among these accessions, representing a high intra-specific genetic diversity within Triticum taxa in Iran. However, such a variance was not observed among their ploidy levels. Based on the genetic similarity analysis, the accessions collected from Iran were divided into two main groups: diploids and polyploids. The genetic similarity among the diploid and polyploid species was 0.85 and 0.89 respectively. There were no significant differences in A genome diversity from different geographic regions. Based on the genetic diversity analyses, we consider there is value in a greater sampling of each species in Iran to discover useful genes for breeding purposes.  相似文献   

15.
Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet.  相似文献   

16.
Characterization of the genetic variability of Mediterranean Pistacia lentiscus genotypes by RAPD, composition of essential oils, and morphology is presented. High polymorphism in morphological parameters was found among accessions, with no significant differences in relation to geographical origin, or to gender. GC-MS analysis of leaves extracted by t-butyl methyl ether, showed 12 monoterpenes, seven sesquiterpenes, and one linear nonterpenic compound. Cluster analysis divided the accessions into two main groups according to the relative content of the major compounds, with no relation to their geographical origin. In contrast, a dendrogram based on RAPD analysis gave two main clusters according to their geographical origins. Low correlation was found between genetic and essential oil content matrices. High morphological and chemical variability on one hand, and genotypic polymorphism on the other, provide ecological advantages that might explain the distribution of Pistacia lentiscus over a wide range of habitats. The plants under study were grown together in the same climatic and environmental conditions, thus pointing to the plausible genetic basis of the observed phenotypic differences.  相似文献   

17.
Melon (Cucumis melo L.) is an economically important horticultural crop with abundant morphological and genetic variability. Complex genetic variations exist even among melon varieties and remain unclear to date. Therefore, unraveling the genetic variability among the three different melon varieties, muskmelon (C. melo subsp. melo), makuwa (C. melo L. var. makuwa), and cantaloupes (C. melo subsp. melo var. cantalupensis), could provide a basis for evolutionary research. In this study, we attempted a systematic approach with genotyping-by-sequencing (GBS)-derived single nucleotide polymorphisms (SNPs) to reveal the genetic structure and diversity, haplotype differences, and marker-based varieties differentiation. A total of 6406 GBS-derived SNPs were selected for the diversity analysis, in which the muskmelon varieties showed higher heterozygote SNPs. Linkage disequilibrium (LD) decay varied significantly among the three melon varieties, in which more rapid LD decay was observed in muskmelon (r2 = 0.25) varieties. The Bayesian phylogenetic tree provided the intraspecific relationships among the three melon varieties that formed, as expected, individual clusters exhibiting the greatest genetic distance based on the posterior probability. The haplotype analysis also supported the phylogeny result by generating three major networks for 48 haplotypes. Further investigation for varieties discrimination allowed us to detect a total of 52 SNP markers that discriminated muskmelon from makuwa varieties, of which two SNPs were converted into cleaved amplified polymorphic sequence markers for practical use. In addition to these markers, the genome-wide association study identified two SNPs located in the genes on chromosome 6, which were significantly associated with the phenotypic traits of melon seed. This study demonstrated that a systematic approach using GBS-derived SNPs could serve to efficiently classify and manage the melon varieties in the genebank.  相似文献   

18.
Diospyros lotus is the one of the most frost-tolerant species in the Diospyros genera, used as a rootstock for colder regions. Natural populations of D. lotus have a fragmented character of distribution in the Northwestern Caucasus, one of the coldest regions of Diospyros cultivation. To predict the behavior of D. lotus populations in an extreme environment, it is necessary to investigate the intraspecific genetic diversity and phenotypic variability of populations in the colder regions. In this study, we analyzed five geographically distant populations of D. lotus according to 33 morphological leaf traits, and the most informative traits were established, namely, leaf length, leaf width, leaf index (leaf to length ratio) and the length of the fourth veins. Additionally, we evaluated the intraspecific genetic diversity of D. lotus using ISSR and SCoT markers and proposed a new parameter for the evaluation of genetic polymorphism among populations, in order to eliminate the effect of sample number. This new parameter is the relative genetic polymorphism, which is the ratio of polymorphism to the number of samples. Based on morphological and genetic data, the northernmost population from Shkhafit was phenotypically and genetically distant from the other populations. The correspondence between several morphological traits (leaf width, leaf length and first to fifth right vein angles) and several marker bands (SCoT5, SCoT7, SCoT30: 800–1500 bp; ISSR13, ISSR14, ISSR880: 500–1000 bp) were observed for the Shkhafit population. Unique SCoT and ISSR fragments can be used as markers for breeding purposes. The results provide a better understanding of adaptive mechanisms in D. lotus in extreme environments and will be important for the further expansion of the cultivation area for persimmon in colder regions.  相似文献   

19.
Gilbert’s syndrome is mainly diagnosed through genetic analysis and is primarily detected through a mutation in the promoter region of the UGT1A1 gene. However, most of the research has been conducted on Caucasian populations. In this study, we studied the Han population in Taiwan to investigate the possibility of other mutations that could cause Gilbert’s syndrome. This study comprised a test group of 45 Taiwanese individuals with Gilbert’s syndrome and 180 healthy Taiwanese individuals as a control group. We extracted DNA from the blood samples and then used Axiom Genome-Wide TWB 2.0 array plates for genotyping. Out of 302,771 single nucleotide polymorphisms (SNPs) from 225 subjects, we detected 57 SNPs with the most significant shift in allele frequency; 27 SNPs among them were located in the UGT1A region. Most of the detected SNPs highly correlated with each other and are located near the first exon of UGT1A1, UGT1A3, UGT1A6, and UGT1A7. We used these SNPs as an input for the machine learning algorithms and developed prediction models. Our study reveals a good association between the 27 SNPs detected and Gilbert’s syndrome. Hence, this study provides a reference for diagnosing Gilbert’s syndrome in the Taiwanese population in the future.  相似文献   

20.
Calanthe tsoongiana is a rare terrestrial orchid endemic to China, and this species has experienced severe habitat loss and fragmentation. Inter-simple sequence repeat (ISSR) markers were employed to assess the genetic diversity and differentiation of six populations of C. tsoongiana. Based on 124 discernible fragments yielded by eleven selected primers, high genetic diversity was revealed at the species level; however, genetic diversity at the population level was relatively low. High-level genetic differentiation among populations was detected based on analysis of molecular variance (AMOVA), indicating potential limited gene flow. No significant relationship was observed between genetic and geographic distances among the sampled populations. These results suggested that restricted gene flow might be due to habitat fragmentation and reduced population size as a result of human activities. Based on the findings, several conservation strategies were proposed for the preservation of this threatened species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号