首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
In North America where the climate is cool enough only one crop is grown yearly, N fertilizers are sometimes applied in the previous fall rather than in the spring for fall- or spring-sown cereal grains. However, in areas where snow accumulates in winter, fall application of N fertilizers is generally inferior to spring application. Substantial nitrification takes place in winter and subsequent N loss occurs primarily in early spring by denitrification after the snow melt. Immobilization of N is also greater with fall- than spring-applied N fertilizers. Nitrogen is more efficiently retained in the soil as NH4 and thus more effectively used by plants if formation of nitrite (NO2) and NO3 is reduced or prevented by inhibiting nitrification. The nitrification is reduced when urea is placed in bands, because of high pH, ammonia concentration and osmotic pressure in the soil. The rate of nitrification is further reduced when urea is placed in widely-spaced nests (a number of urea prills placed together at a point below the soil surface) or as large urea granules (LUG) by reducing contact between the nitrifying bacteria and the NH4 released upon urea hydrolysis. A further reduction in nitrification from LUG can be obtained by addition of chemical nitrification inhibitors (such as dicyandiamide (DCD)) to LUG. The concentration of a chemical inhibitor required to suppress nitrification decreases with increasing granule size. The small soil-fertilizer interaction zone with placement of urea in nests or as LUG also reduces immobilization of fertilizer N, especially in soils amended with crop residues. The efficiency of fall-applied N is improved greatly by placing urea in nests or as LUG for small cereal grains. Yields of spring-sown barley from nests of urea or LUG applied in the fall are close to those obtained with spring-applied urea prills incorporated into the soil. Delaying urea application until close to freeze-up is also improved the efficiency of fall-applied N. This increased effectiveness of urea nests or LUG is due to slower nitrification, lower N loss over the winter by denitrification, and reduced immobilization of applied N. Fall application of LUG containing low rates of DCD slows nitrification, reduces over-winter N loss, and causes further improvement in yield and N uptake of winter wheat compared to urea as LUG alone in experiments in Ontario; in other experiments in Alberta there is no yield advantage from using a nitrification inhibitor with LUG for barley. Placement of LUG or nests of urea in soil is an agronomically sound practice for reducing N losses. This practice can eliminate or reduce the amount of nitrification inhibitor necessary to improve the efficiency of fall-applied urea where losses of mineral N are a problem. The optimum size of urea nest or LUG, and optimum combination of LUG and an efficient nitrification inhibitor need to be determined for different crops under different agroclimatic conditions. The soil (texture, CEC, N status), plant (winter or spring crop, crop geometry, crop growth duration and cultivar) and climatic (temperature, amount and distribution of precipitation) factors should be taken into account during field evaluation of LUG. There is a need to conduct region-specific basic research to understand mechanisms and magnitudes of N transformations and N losses in a given ecosystem. Prediction of nitrification from LUG or urea nests in various environments is needed. In nitrification inhibition studies with LUG and chemical nitrification inhibitors, measurements of nitrifier activity will be useful. Finally, there is need for development of applicators for mechanical placement of LUG or urea prills in widely-spaced nests in soil.  相似文献   

2.
A survey on current fertilizer practices and their effects on soil fertility and soil salinity was conducted from 1996 to 2000 in Beijing Province, a major vegetable production area in the North China Plain. Inputs of the major nutrients (NPK) and fertilizer application methods and sources for different vegetable species and field conditions were evaluated. Excessive N and P fertilizer application, often up to about 5 times the crop requirement in the case of N, was very common, especially for high-value crops. Potassium supply may have been inadequate for some crops such as leafy vegetables. Urea, diammonium orthophosphate ((NH4)2HPO4) and chicken manure were the major nutrient sources for vegetable production in the region. Over 50% of N, 60% of P and nearly 90% of K applied originated from organic manure. Total N application rate for open-field Chinese cabbage from organic manure and inorganic fertilizers ranged from 300 to 900 kg N ha–1 on 78% of the farms surveyed. More than 35% of the surveyed greenhouse-grown tomato crops received > 1000 kg N ha–1 from organic and inorganic sources. A negative K balance (applied K minus K removed by the crop) was found in two-thirds of the surveyed fields of open-field Chinese cabbage and half of the surveyed fields of greenhouse-grown tomato. Plant-available N, P and K increased with increasing length of the period the greenhouse soils had been used for vegetable production. Similarly, soil salinity increased more in greenhouse soils than in open-field soils. The results indicate that balanced NPK fertilizer use and maintenance of soil quality are important for the development of sustainable vegetable production systems in this region.  相似文献   

3.
Nitrate (NO3) leaching and water contamination is a major environmental issue around the globe. In grazed grassland, most of the nitrate leaching occurs under the animal urine patch areas because of high nitrogen (N) loading rates. The aim of this study was to determine NO3-N leaching losses and pasture responses as affected by different animal urine-N loading rates and application of a nitrification inhibitor, dicyandiamide (DCD). Undisturbed monolith lysimeters (50 cm diameter by 70 cm deep) of a free-draining stony soil (Pallic orthic brown soil; Udic Haplustept loamy skeletal) with a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) were used for the study. Results showed that total NO3-N leaching losses increased significantly (P < 0.01) from 22.8 to 59.7, 188.1 and 254.9 kg NO3-N ha−1, when urine N was applied at 0 (Control), 300, 700 and 1,000 kg N ha−1, respectively, without DCD. The application of DCD to the corresponding treatments significantly (P < 0.01) reduced the total NO3-N leaching losses to 12.4, 9.9, 75.3 and 139.0 kg N ha−1, respectively, resulting in an average reduction of 63%. Pasture yield increased linearly with increasing urine-N application rates and the application of DCD resulted in an average 25% increase in pasture dry matter production. The average N offtake was increased by 32% with the application of DCD, confirming the effectiveness of the inhibitor in improving the N cycle. These results indicate that the DCD nitrification inhibitor technology has the potential to be a valuable nitrogen management tool in different grazed pasture systems (e.g. sheep, beef cattle and dairy cattle) to mitigate NO3 leaching and improve sustainable production.  相似文献   

4.
Nitrification inhibitors such a dicyandiamide (DCD) help to reduce leaching losses by retaining applied N in the ammoniacal form. Research objectives were to evaluate dicyandiamide added to ammonium sulphate-nitrate (ASN) as a nitrification inhibitor in cultivated soils (Xeropsamments) and its effect on N uptake by citrus (Citrus sinensis (L.) Osbeck). Under field conditions, fertilization of adult trees with ASN (600 g N tree–1) either with or without DCD (2% DCD-N) was compared (ASN+DCD and ASN, respectively). The NH 4 + -N concentrations in plots fertilized with ASN+DCD were significantly higher than ASN plot in the 0-15 cm layer during 5–105 day period. Nitrification started immediately after N application in both treatments (ASN and ASN+DCD). In all three soil layers analyzed, NO 3-N concentrations were higher in the ASN plots than in the ASN+DCD during the first 20 days. This indicates that nitrification of NH+ 4 from ASN was more rapid in the absence of DCD. On the other hand, fertilization with ASN+DCD kept higher levels of NO 3-N in soils than ASN during the rest of experience period (40–160 days). Addition of DCD to ASN showed a higher N concentration in the spring-flush leaves with respect to the trees fertilized with ASN, during the growth cycle. These results suggest that the use of a nitrification inhibitor permitted a more efficient utilization of fertilizer N by citrus trees. The plants treated with DCD added to ASN showed a higher yield in number of units per tree and a better fruit colour index than those treated with ASN alone.  相似文献   

5.
The relative contribution of nitrification and denitrification to N2O production was investigated by means of soil incubations with acetylene in a mixed clover/ryegrass sown sward 5 days after application of a mineral fertiliser (calcium ammonium nitrate) or an organic one (cattle slurry) with and without the addition of the nitrification inhibitor dicyandiamide (DCD) and the commercial slurry additive Actilith-F2. At this time, maximum field N2O emissions were taking place. N2O production by the slurry amended soil was twice as high as that of the mineral amended one. N2O came in a greater proportion from nitrification rather than from denitrification in the slurry treatment, while for the mineral fertilisation most N2O came from denitrification. The addition of DCD to slurry produced a decrease in N2O production both from nitrification and denitrification. No reduction in N2O losses was observed from addition of DCD to the mineral fertilisation, although DCD resulted effective in reducing the nitrification rate by 53% both in the slurry and the mineral fertilisation. Actilith F2 induced a high nitrification rate and N2O production from denitrification was reduced while that from nitrification was not. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The C and N mineralization characteristics of two organic N fertilizers were determined in a soil-less incubation system at three temperature regimes. Protox (derived from activated sewage sludge) initially degraded more rapidly by microbial action compared with dried blood. However, dried blood released more CO2-C and inorganic N towards the end of the incubation periods. The rate of microbial degradation increased with temperature. Mineralization characteristics of protein-based N sources are discussed in relation to organic N nutrition of vegetable crops.  相似文献   

7.
Five field experiments and one greenhouse experiment were carried out to assess the effects of nitrogen (N) fertilizer type and the amount of applied N fertilizer on nitrous oxide (N2O) emission from grassland. During cold and dry conditions in early spring, emission of N2O from both ammonium (NH 4 + ) and nitrate (NO 3 ) containing fertilizers applied to a clay soil were relatively small, i.e. less than 0.1% of the N applied. Emission of N2O and total denitrification losses from NO 3 containing fertilizers were large after application to a poorly drained sand soil during a wet spring. A total of 5–12% and 8–14% of the applied N was lost as N2O and via denitrification, respectively. Emissions of N2O and total denitrification losses from NH 4 + fertilizers and cattle slurry were less than 2% of the N applied. Addition of the nitrification inhibitor dicyandiamide (DCD) reduced N2O fluxes from ammonium sulphate (AS). However, the effect of DCD to reduce total N2O emission from AS was much smaller than the effect of using NH 4 + fertilizer instead of NO 3 fertilizer, during wet conditions. The greenhouse study showed that a high groundwater level favors production of N2O from NO 3 fertilizers but not from NH 4 + fertilizers. Inereasing calcium ammonium nitrate (CAN) application increased the emitted N2O on grassland from 0.6% of the fertilizer application rate for a dressing of 50 kg N ha–1 to 3.1% for a dressing of 300 kg N ha–1. In another experiment, N2O emission increased proportionally with increasing N rate. The results indicate that there is scope for reducing N2O emission from grasslands by choosing the N fertilizer type depending on the soil moisture status. Avoiding excessive N application rates may also minimize N2O emission from intensively managed grasslands.  相似文献   

8.
Application of chemical fertilizers and farmyard manure affects crop productivity and improves nutrient cycling within soil–plant systems, but the magnitude varies with soil-climatic conditions. A long-term (1982–2004) field experiment was conducted to investigate the effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizers and farmyard swine manure (M) on seed and straw yield, protein concentration, and N uptake in the seed and straw of 19-year winter wheat (Triticum aestivum L.) and four-year oilseed (three-year canola, Brassica napus L. in 1987, 2000 and 2003; one-year flax, Linum usitatisimum L. in 1991), accumulation of nitrate-N (NO3-N) in the soil profile (0–210 cm), and N balance sheet on a Huangmian soil (calcaric cambisols, FAO) near Tianshui, Gansu, China. The two main plot treatments were without and with farmyard swine manure (M); sub-plot treatments were control (Ck), N, NP, and NPK.␣The average seed yield decreased in the order MNPK ≥ MNP > MN ≥ NPK ≥ NP > M > N > Ck. The average effect of manure and fertilizers on seed yield was in the order M > N > P > K. The seed yield increase was 20.5% for M, 17.8% for N, 14.2% for P, and 2.9 % for K treatment. Seed yield response to fertilizers was much greater for N and P than for K, and it was much greater for no manure than for manure treatment. The response of straw yield to fertilization treatments was usually similar to that of seed yield. The N fertilizer and manure significantly increased protein concentration and N uptake plant. From the standpoint of increasing crop yield and seed quality, MNPK was the best fertilization strategy. Annual applications of N fertilizer and manure for 23 successive years had a marked effect on NO3-N accumulation in the 0–210 cm soil profile. Accumulation of NO3-N in the deeper soil layers with application of N fertilizer and manure is regarded as a potential danger, because of pollution of the soil environment and of groundwater. Application of N fertilizer in combination with P and/or K fertilizers reduced residual soil NO3-N significantly compared with N fertilizer alone in both no manure and manure plots. The findings suggest that integrated and balanced application of N, P, and K fertilizers and␣manure at proper rates is important for protecting soil and groundwater from potential NO3-N pollution and for maintaining high crop productivity in the rainfed region of Northwestern China.  相似文献   

9.
The effect of a nitrification inhibitor on the accumulation of ammonium (NH 4 + -N) and nitrate (NO 3 - -N) in the profile was investigated in two field experiments in Canterbury, New Zealand after the ploughing of a 4-year old ryegrass/white clover pasture in early (March) and late autumn (May). Nitrate leaching over the winter, and yield and N uptake of a following wheat crop were also assessed.The accumulation of N in the soil profile by the start of winter was greater in the March fallow (76–140 kg N ha–1) than in the May fallow treatment (36–49 kg N ha–1). The nitrification inhibitor dicyandiamide (DCD) did not affect the extent of net N mineralization, but it inhibited nitrification when applied to pasture before ploughing, especially at its depth of incorporation (100–200 mm). Nitrification inhibition in spring was greater when DCD was applied in May rather than in March due to its reduced degradation over the winter.Cumulative nitrate leaching losses were substantial from the March fallow treatment in both years (about 100 kg N ha–1). A delay in the cultivation of pasture and the application of DCD both reduced nitrate leaching losses. When leaching occurred early in the winter (in 1991), losses were less when pasture was cultivated in May (2 kg N ha–1) than when DCD was applied to pasture cultivated in March (68 kg N ha–1). When leaching occurred late in the winter (in 1992), similar losses were measured from pasture cultivated in May (49 kg N ha–1) and from DCD-treated pasture cultivated in March (57 kg N ha–1).Grain harvest yield and N uptake of the following spring wheat crop were generally unaffected by the size of the N leaching loss over the winter. This was due to the high N fertility of the soil after four years of a grazed leguminous pasture.  相似文献   

10.
A variety of process-based models have been developed for predicting nitrogen (N) dynamics in agro-ecosystem; however, no reliable models have been validated for N leaching from soils receiving a long-term application of different types of animal manure composts. The Leaching Estimation and Chemistry Model (LEACHM) was recently modified by incorporating the basic structure of Rothamsted Carbon Model for extending its ability to describe soil organic matter decomposition and subsequent N leaching in soils rich in organic matter. We evaluate the applicability of the modified LEACHM in cropped Yellow soils receiving 10-year application of cattle or swine manure compost in addition to chemical fertilizers, where high-frequency field monitoring data of soil water contents, soil N contents and leachate N concentrations were available for the last 3 years. Particular attention was paid to determine all input parameters from independent measurements, parameterization from known soil properties or databases without optimisation to fit the measured field data. The model reasonably predicted temporal changes in the soil NH4-N and NO3-N contents, and inorganic N concentrations in the leachate as well as their differences due to different manure compost/chemical fertilizer applications. The simulations of leached N concentration yielded a Willmott index of agreement (IA) of 0.62–0.68, with those for soil moisture, soil nitrate content and crop N uptake all within an acceptable IA range. In view of the good performance without site-specific calibrations, the modified LEACHM appears to be a valuable tool for predicting N leaching from cropped soils receiving long-term manure compost applications.  相似文献   

11.
Maintaining organic pools of nitrogen (N) in soil is important for providing a steady flux of N in soil solution. Bioslurry, which is the product obtained from anaerobically digested (methanised) farm yard manure (FYM), is an efficient source of organic manure with capability to supply nutrients, particularly N to crops. A study was conducted to see the equilibrium relationship between the inorganic and organic N fractions as affected by application of bioslurry and fertilizer N in a maize (Zea mays L.) — mustard (Brassica campestris) crop sequence. Results obtained revealed that 75.7 percent of the total soil N was in the hydrolyzable N fraction. Among the hydrolyzable fractions, aminoacid N, unidentified N and hydrolyzable NH 4 + constituted 25.8, 25.7 and 18.6 percent of the total N, respectively. Ammonium fixed in clay lattice constituted 19.1 percent of the total N. Application of bioslurry @ 13.32 t ha–1 under N-unfertilized conditions increased NO3-N, fixed NH 4 + , aminoacid N, hexosamine N and hydrolyzable NH 4 + . The magnitude of increase in total hydrolyzable and inorganic N fractions was 31.4 and 15.2 percent, respectively. Growing crops decreased N in the inorganic fractions. Transformation reaction of organic N to inorganic N was evident after second crop in the sequence. Fertilizer N application encouraged build-up of N in organic fractions, particularly in aminoacid, hydrolyzable NH 4 + and unidentified N fractions. Application of bioslurry maintained higher status of N in both organic and inorganic N fractions. Linear regression relationship between N content in different fractions and bioslurry applied both under fertilized and unfertilized conditions assisted in developing prediction models on the rate of bioslurry to be applied to arrive at the desired N content in different fractions. Significant intercorrelation coefficients (r2) between different fractions indicated free mobility between the N fractions under limited N conditions suggesting a dynamic equilibrium between them. Path coefficient analysis showed that exchangeable NH 4 + and NO3-N had substantial direct positive effect on N uptake by mustard with bioslurry application. Under untreated conditions exchangeable NH 4 + , hexosamine and hydrolyzable NH 4 + fractions had higher direct contribution to meet mustard N requirement. Most of the hydrolyzable N fractions contributed to N uptake by mustard by first transforming to exchangeable NH 4 + and NO3—N and thus setting an equilibrium condition for maintaining the steady flux of N to plants.Part of Ph.D. Thesis of the senior author  相似文献   

12.
N2O is emitted from agricultural soils due to microbial transformation of N from fertilizers, manures and soil N reserves. N2O also derives from N lost from agriculture to other ecosystems: as NH3 or through NO 3 - leaching. Increased efficiency in crop N uptake and reduction of N losses should in principle diminish the amount of N2O from agricultural sources. Precision in crop nutrient management is developing rapidly and should increase this efficiency. It should be possible to design guidelines on good agricultural practices for low N2O emissions in special situations, e.g. irrigated agriculture, and for special operations, e.g. deep placement of fertilizers and manures. However, current information is insufficient for such guidelines. Slow-release fertilizers and fertilizers with inhibitors of soil enzymatic processes show promise as products which give reduced N2O emissions, but they are expensive and have had little market penetration. Benefits and possible problems with their use needs further clarification.  相似文献   

13.
Samples (375 g) of the Evesham series (clay loam) soil were incubated under aerobic conditions at 20 °C following incorporation of liquid mesophilic digested sewage sludge (1150 mg N L–1). Simultaneously, pot trials under field conditions were also established. Total soluble N total oxides of nitrogen, ammonium N and headspace carbon dioxide samples were determined periodically over the first 480 day degrees C. Soluble organic N fractions were also calculated and it was found that the soil water concentration of available N (as nitrate N) could be predicted from summation of SON and NH4-N on sludge application. The accumulation of nitrate N was compared with field derived data and both correlated well to a 2 pool exponential model. High rates of nitrification were observed and 70% of the organic N applied was mineralised over 480 day degrees C. The use of the relative quantity of soluble to insoluble organic N could be a possible indicator of subsequent nitrogen availability in field application.  相似文献   

14.
Nitrous oxide (N2O) is a potent greenhouse gas released from high rainfall cropping soils, but the role of management in its abatement remains unclear in these environments. To quantify the relative influence of management, nitrogen (N) fertiliser and soil nitrification inhibitor was applied to separate but paired raised bed and conventionally flat field experiments in south west Victoria, to measure emissions and income from wheat and canola planted 2 and 3 years after conversion from a long-term pasture. Management included four different rates of N fertiliser, top-dressed with and without the nitrification inhibitor Dicyandiamide (DCD), which was applied in solution to the soil in the second year of experimentation. Crop biomass, grain yield, soil mineral N, soil temperature and soil water and N2O flux were measured. Static chamber methodology was used to identify relative differences in N2O loss between management. In the second crop (wheat) following conversion, N2O losses were up to 72 % lower (P < 0.05) in the furrows, receiving the lower rate of N fertiliser compared with the highest rate, with less frequent reductions observed in the third crop (canola); losses of N2O from the beds was unaffected by N rate, perhaps from nitrate leakage into the adjacent furrow of the raised bed experiment. On the nearby flat experiment, nitrate leaching may have diminished the effects of N rate and DCD on N2O flux. Furthermore the extra N did not significantly increase grain yield in either the wheat or canola crops on both experiments. The application of DCD in the canola crop temporarily reduced (P < 0.05) N2O production by up to 84 % from the beds, 83 % in the adjacent furrows and 75 % on the flat experiment. Grain yield was not significantly (P < 0.001) affected however, canola income was reduced by $1407/ha and $1252/ha, compared with no addition of inhibitor on the respective bed and flat experiments. Although N2O fluxes are driven by environmental episodic events, management will play a role in N2O abatement. However, DCD currently appears economically unfeasible and matching N fertiliser supply to meet crop demand appears a better option for minimising N2O losses from high rainfall cropping systems.  相似文献   

15.
Decline in crop yields is a major problem facing smallholder farmers in Kenya and the entire Sub-Saharan region. This is attributed mainly to the mining of major nutrients due to continuous cropping without addition of adequate external nutrients. In most cases inorganic fertilizers are expensive, hence unaffordable to most smallholder farmers. Although organic nutrient sources are available, information about their potential use is scanty. A field experiment was set up in the sub-humid highlands of Kenya to establish the chemical fertilizer equivalency values of different organic materials based on their quality. The experiment consisted of maize plots to which freshly collected leaves of Tithonia diversifolia (tithonia), Senna spectabilis (senna) and Calliandra calothyrsus (calliandra) (all with %N>3) obtained from hedgerows grown ex situ (biomass transfer) and urea (inorganic nitrogen source) were applied. Results obtained for the cumulative above ground biomass yield for three seasons indicated that a combination of both organic and inorganic nutrient source gave higher maize biomass yield than when each was applied separately. Above ground biomass yield production in maize (t ha–1) from organic and inorganic fertilization was in the order of senna+urea (31.2), tithonia+urea (29.4), calliandra+urea (29.3), tithonia (28.6), senna (27.9), urea (27.4), calliandra (25.9), and control (22.5) for three cumulative seasons. On average, the three organic materials (calliandra, senna and tithonia) gave fertilizer equivalency values for the nitrogen contained in them of 50, 87 and 118%, respectively. It is therefore recommended that tithonia biomass be used in place of mineral fertilizer as a source of nitrogen. The high equivalency values can be attributed to the synergetic effects of nutrient supply, and improved moisture and soil physical conditions of the mulch. However, for sustainable agricultural production, combination with mineral fertilizer would be the best option.  相似文献   

16.
A laboratory incubation experiment was conducted to gain a better understanding of N transformations which occur near large urea granules in soil and the effects of dicyandiamide (DCD), nitrifier activity and liming. Soil cores containing a layer of urea were used to provide a one-dimensional approach and to facilitate sampling. A uniform layer of 2 g urea or urea + DCD was placed in the centre of a 20 cm-long soil core within PVC tubing. DCD was mixed with urea powder at 50 mg kg–1 urea and enrichment of soil with nitrifiers was accomplished by preincubating Conestogo silt loam with 50 mg NH 4 + -N kg–1 soil. Brookston clay (pH 5.7) was limited with CaCO3 to increase the pH to 7.3. The cores were incubated at 15°C and, after periods of 10, 20, 35 and 45 days, were separated into 1-cm sections. The distribution of N species was similar on each side of the urea layer at each sampling. The pH and NH 4 + (NH3) concentration were very high near the urea layer but decreased sharply with distance from it. DCD did not influence urea hydrolysis significantly. Liming of Brookston clay increased urea hydrolysis. The rate of urea hydrolysis was greater in Conestogo silt loam than limed Brookston clay. Nitrite accumulate was relatively small with all the treatments and occurred near the urea layer (0–4 cm) where pH and NH 4 + (NH3) concentration were high. The nitrification occurred in the zone where NH 4 + (NH3) concentration was below 1000µgN g–1 and soil pH was below 8.0 and 8.7 in Brookston and Conestogo soils, respectively. DCD reduced the nitrifier activity (NA) in soil thereby markedly inhibiting nitrification of NH 4 + . Nitrification was increased significantly with liming of the Brookston soil or nitrifier enrichment of the Conestogo soil. There was a significant increase in NA during the nitrification of urea-N. The (NO 2 + NO 3 )-N concentration peaks coincided with the NA peaks in the soil cores.A practical implication of this work is that large urea granules will not necessarily result in NO 2 phytotoxicity when applied near plants. A placement depth of about 5 cm below the soil surface may preclude NH3 loss from large urea granules. DCD is a potential nitrification inhibitor for use with large urea granules or small urea granules placed in nests.  相似文献   

17.
Efficient use of N applied in the form of organic and inorganic fertilizers is important in maize (Zea mays L.) production to maximize producer’s economic returns and maintain soil and water quality. A field study was conducted for three consecutive years (2003–2005) in Thessaloniki, Greece to investigate whether liquid cattle manure can be used to replace inorganic fertilizers and also whether inorganic fertilizer can be applied preplant or as a combination of preplant and sidedress and can affect maize growth, development and N use efficiency. The treatments were control (unfertilized), liquid dairy cattle manure (Manure), application of 260 kg N ha−1 year−1 as basal dressing (N-single), application of 130 kg ha−1 year−1 N as basal dressing before sowing and 130 kg N ha−1 when plants were at the eight-leaf stage (V8) (N-split). In 2 out of the 3 years of the study there was a significant positive effect of fertilizer application on maize growth, development, N uptake, and partitioning compared with the control. Dry matter production was increased by an average of 39% during the 2 years in plots fertilized either with manure or inorganic fertilizers than the control plots. Also from the yield components kernel weight per ear and number of kernels per ear were increased by an average of 35% and 32%, respectively in the fertilized plots compared with the control plots. Chlorophyll level was affected as it was increased by an average of 18%, 14%, and 18% at the ten-leaf stage (V10), silking and milk stage, respectively in the fertilization treatments compared with the control. Similar trend was observed in the other parameters that were studied. No differences were found between the manure and the different times of N application which indicates that manure can be used to replace inorganic fertilizer. Applying N either preplant in a single application or in split application (half of N preplant and half as sidedress) did not have any effect on any characteristics that were studied indicating that preplant application can be used as it is more cost effective. The present study indicates that liquid cattle manure can be used to replace inorganic fertilizers and also that there was no difference between preplant and sidedress application of N.  相似文献   

18.
Inorganic nitrogen in the soil is the source of N for non-legume plants. Rapid methods for monitoring changes in inorganic N concentrations would be helpful for N nutrient management. The effect of varying soil moisture content on soil mineral nitrogen, electrical conductivity (EC), and pH were studied in a laboratory experiment. Soil NO3-N increased as soil water-filled pore space (WFPS) increased from 0 to 80 cm3 cm–3. At soil moisture levels greater than 80 cm3 cm–3, NO3-N concentration declined rapidly and NH4-N concentration increased, likely due to anaerobic conditions existing at higher WFPS levels. Soil pH did not change as soil moisture increased from 100 g kg–1 to 400 g kg–1 and increased from 6.2 to 6.6 at higher levels of soil moisture. Soil EC was correlated with soil mineral N concentration when measured in situ with a portable EC meter (R 2=0.85) or in the laboratory as 1:1 soil water slurries (R 2=0.92). Results suggest that EC can be used to rapidly detect changes in soil inorganic N status in soils where salts and free carbonates are not present in large amounts.  相似文献   

19.
The effectiveness of nitrification inhibitors for abatement of N loss from the agroecosystem is difficult to measure at typical agronomic scales, since performance varies at the research-field scale due to complex interactions among crop management, soil properties, length of the trial, and environmental factors. The environmental impact of the nitrification inhibitor nitrapyrin on N losses from agronomic ecosystems was considered with emphasis on the Midwestern USA. A meta-evaluation approach considered the integrated responses to nitrification inhibition found across research trials conducted in diverse environments over many years as measured in side-by-side comparisons of fertilizer N or manure applied with and without nitrapyrin. The resulting distributions of response indices were evaluated with respect to the magnitude and variance of the agronomic and environmental effects that may be achieved when nitrification inhibitors are used regionally over time. The indices considered (1) crop yield, (2) annual or season-long maintenance of inorganic N within the crop root zone, (3) NO3-N leached past the crop root zone, and (4) greenhouse gas emission from soil. Results showed that on average, the crop yield increased (relative to N fertilization without nitrapyrin) 7% and soil N retention increased by 28%, while N leaching decreased by 16% and greenhouse gas emissions decreased by 51%. In more than 75% of individual comparisons, use of a nitrification inhibitor increased soil N retention and crop yield, and decreased N leaching and volatilization. The potential of nitrification inhibitors for reducing N loss needs to be considered at the scale of a sensitive region, such as a watershed, over a prolonged period of use as well as within the context of overall goals for abatement of N losses from the agroecosystem to the environment.  相似文献   

20.
Soil incubation studies were undertaken in controlled environment cabinets at 15°C to investigate the effect of increasing application rates of calcium ammonium nitrate (CAN) on net nitrification in two grassland soils. Granular CAN was applied to the surface of freshly collected, moist soil, at a rate equivalent to 0, 100, 200, 400, 800 and 1600µg NH 4 + -N and NO 3 - -N per gram of oven dry soil. In half the treatments finely ground CaCO3 was incorporated into the moist soil to raise the starting pH. Changes in soil mineral N and pH were measured at weekly intervals up to six-weeks. The most probable number (MPN) technique was used to enumerate the NH 4 + -N and NO 2 - -N oxidizers at the beginning and end of the incubation.At low rates of CAN application there was considerable NH 4 + -N oxidation to NO 3 - -N during the incubation of both soils. Lime stimulated this N transformation. At high application rates (i.e. 800 and 1600 ppm) there was little change in NH 4 + -N or NO 3 - -N on either soil during the 6 week incubation, in the presence or absence of lime. The rate of NO 3 - -N produced peaked at 5.6 and 3.8 mg NO 3 - -N kg–1 d–1 on soil 1 and 2 respectively, in the presence of lime. Above a level of 400 ppm CAN (equivalent to 38 kg N ha–1) the rate of NO 3 - -N produced decreased. The higher rate of net nitrification in soil 1 compared with soil 2 was probably due to a higher number of nitrifying bacteria. Although high rates of CAN decreased the nitrifying activity of both soils there was little difference between treatments in the actual numbers of NH 4 + -N and NO 2 - -N oxidizers determined by the MPN technique.The results showed that the rate of granular CAN applied to the soil surface can influence the local activity of nitrifying bacteria and subsequent N transformations. At application rates of CAN generally used agriculturally for grass production, it is likely that net nitrification of the NH 4 + -N in the fertilizer granule will be inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号