共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
由MTS-H2体系在1000~1300℃沉积了SiC涂层,研究了SiC涂层沉积速率和温度之间的关系,MTS-H2体系沉积反应的平均活化能为114kJ/mol,用理论模型证明了低温化学气相沉积SiC为动力学控制过程.SiC涂层表面的显微结构随沉积温度变化而呈现规律的变化:沉积温度T<1150℃时,CVD SiC涂层表面致密、光滑;T≥1150℃时,CVD SiC涂层表面变得疏松、粗糙.随着沉积温度的升高,CVD SiC涂层的结晶由不完整趋向于完整;当沉积温度T≥1150℃,CVD SiC涂层的XRD谱图中除了β-SiC占主体外还出现了少量α-SiC. 相似文献
4.
以SiCl4-NH3-H2为前驱体, 在750~1250 ℃范围内通过低压化学气相沉积技术于碳纤维布上制备氮化硅涂层, 系统研究了沉积温度对氮化硅涂层的生长动力学、形貌、化学组成和结合态的影响。研究结果表明, 在沉积温度低于1050 ℃的情况下, 随着沉积温度的升高, 沉积速率单调增大。而当沉积温度高于1050 ℃时, 沉积速率随温度升高逐渐下降。在整个沉积温度范围内, 随着沉积温度的升高, 涂层表面形态逐渐向菜花状转变, 同时涂层表面变得愈加粗糙。涂层的最佳沉积温度在750~950 ℃之间。随着沉积温度的升高, 涂层中氮含量先降低后升高, 而硅含量不断增加, 氧含量在整个温度范围内逐渐降低。原始沉积涂层均呈无定形态, 经高于1300 ℃热处理后实现晶化, 并伴随着表面形貌的显著变化。此时涂层仅由a-Si3N4构成, 不存在任何b-Si3N4相。 相似文献
5.
以三氯甲基硅烷和氢气为气源,研究了化学气相沉积碳化硅过程中,温度(850-1350℃)对沉积速率、反应物消耗效应、涂层形貌和相结构的影响.用磁悬浮天平在线实时称量基体质量变化进行动力学研究;采用扫描电镜和X射线衍射对样品做了表征.结果表明,沉积过程存在四个控制机理:a区(<1000℃)为表面反应动力学控制;b区(1000-1050℃)主要是HCl对沉积的抑制作用;c区(1050-1300℃)是表面化学反应和传质共同控制;d(>1300℃)为传质为限速步骤.由于不同的控制机制,导致所得涂层的形貌存在差异.含碳含硅中间物质浓度的减小、HCl增多和MTS的分解共同导致反应物消耗效应.涂层由热解碳和碳化硅两相组成,温度的升高使热解碳相减少,碳硅比接近1. 相似文献
6.
7.
8.
采用HSiCl3-NH3-N2(稀释气体)体系在石英陶瓷基板上通过低压化学气相沉积(LPCVD)法沉积出了Si3N4涂层,研究了工艺条件对涂层沉积速率的影响.结果表明,在没有稀释气体的情况下,随着沉积温度升高,Si3N4涂层的沉积速率逐渐增加,在850℃附近达到最大值,随着反应温度的进一步升高,涂层沉积速率下降.当存在稀释气体时,在所选温度范围内随着沉积温度的升高,Si3N4涂层的沉积速率一直增大,反应的表观活化能约为222KJ/mol.随着原料中NH3/HSiCl3流量比值的增大,Si3 N4涂层的沉积速率逐渐增加,随后稳定,但稍有下降趋势.在所选稀释气体流量范围内,Si3N4涂层的沉积速率随着稀释气体流量的增加而增大. 相似文献
9.
10.
采用水热电泳沉积法在SiC-C/C复合材料SiC内涂层表面制备了硅酸钇抗氧化外涂层,并借助X射线衍射(XRD)、扫描电子显微镜(SEM)对涂层的相组成及显微结构进行了表征.讨论了沉积电压对硅酸钇涂层沉积量及显微结构的影响,并研究了不同沉积电压下涂层沉积量与时间的关系,同时测试了涂层试样的抗氧化性能.研究结果表明,随着沉积电压的升高,涂层的沉积量有所增加,涂层的致密性和均匀性也逐渐得到改善.当电压为210V时达到最佳,继续升高沉积电压,涂层的均匀性变差,当沉积电压为240V时,涂层出现明显开裂;不同沉积电压下涂层沉积量随时间呈抛物线变化;涂层在1500℃静态空气中经过10h氧化后,失重仍然小于2%. 相似文献
11.
12.
13.
不同氧化物对C/C复合材料SiC涂层性能的影响 总被引:4,自引:1,他引:4
分别以MgO、Al2>O3和B2O3为添加剂,利用包埋法在炭/炭(C/C)复合材料表面制取了单层SiC涂层,并在这三种SiC涂层表而采用相同包埋工艺得到SiC外涂层.研究了这三种氧化物对SiC涂层组织结构及抗氧化性能的影响.通过SEM、EDS和XRD分析表明,以MgO为添加剂得到的单层SiC涂层疏松且含有大量孔洞;以Al2O3为添加剂得到的涂层较为致密,但存在部分孔洞;以B2O3为添加剂时涂层均匀、致密.在1500℃空气介质中的氧化实验表明,以B2O3为添加剂的双层SiC涂层(~200μm)可有效保护C/C复合材料200h不被氧化. 相似文献
14.
针对一种SiC材质的非回转对称非球面元件,本文介绍了该元件的加工和检测方法.该实验件的理想面形方程为z=3λ(X3-y3)(x,y为归一化坐标,λ=0.632 8μm),镜胚材料为Φ150 mm的SiC,加工方式为数控机床和手工研抛相结合.在加工过程中为提高加工效率缩短加工时间,选择平面作为最接近表面并认为去除了面形中的倾斜项.去倾斜之前最低点的材料去除量为3.8μm,而去倾斜后则为2.06μm.本文提出了一种新的基于数字模板的非零位检测方法.直接采用Zygo平面干涉仅检测工件,检测结果可以分为三部分:工件实际面形与理想面形的误差,工件理想面形与平面波前的误差和非共路误差.其中第二部分可以事先计算出来并转换为系统误差文件在检测过程中自动去除.通过在相同条件下检测一个已知的球面样板验证了非共路误差对于检测结果的影响可以忽略不计.由此在一次测量中可直接得到面形误差.实验结果表明,基于这种检测手段最后测得实验件的面形精度PV达到0.327λ,RMS优于0.025λ,达到设计要求. 相似文献
15.
16.
17.
铝合金熔体氧化制备Al2O3 / SiC/ Ni/ Al-Si多相模糊界面陶瓷基复合材料 总被引:2,自引:2,他引:0
针对Al2O3 / Al 复合材料中金属相Al 对其高温性能的不利影响, 本试验在高温下将铝合金熔体氧化渗透到注浆成型的SiC/ Ni 多孔预制体中, 制备了Al2O3 / SiC/ Ni/ Al-Si 多相陶瓷基复合材料。借助光学显微镜、电子显微镜(SEM) 、X 射线衍射仪(XRD) 、波谱仪( EDS) 等手段分析了预制体和复合材料的相组成、微观结构及界面特征。结果表明, 复合材料的主晶相为Al2O3 与SiC , 相间存在Al (Si) 复合氧化物、NiAl2O4 及Ni 与Al-Si 合金相, 各相界面处成分呈连续过渡变化趋势, 构筑了具有模糊界面特征的多相复合材料。 相似文献
18.
19.
研究了SiC凝胶浇注成型工艺中,不同引发体系引发浆料固化过程的流变特性,发现SiC粉体对丙烯酰胺(AM)自由基聚合存在阻聚作用.引发剂体系分别为过硫酸铵(APS)、过硫酸铵-四甲基乙二胺(APS-TEMED)氧化还原体系和2,2-偶氮[2-(2-咪唑啉2-基)丙烷]盐酸盐(AZIP·2HCl).3种引发剂引发的浆料固化过程中均存在阻聚作用.AZIP·2HCl引发时,阻聚作用尤为明显,浆料在120min内不能完全固化.烧结助剂的加入可降低阻聚作用对浆料固化的影响,但浆料仍需较长的时间才能完全固化.煅烧处理可消除粉体的阻聚作用,表明粉体表面的不明有机物可能是阻聚作用的原因.对比3种引发体系引发浆料固化过程的流变曲线,得出APS-TEMED是SiC凝胶浇注成型的理想引发体系的结论. 相似文献