共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
以SiC陶瓷片为基体层,金属W为夹层,热压烧结制成SiC/W层状复合材料。X射线衍射分析显示:夹层中的W与SiC反应生成了W5Si3和WC,无金属W存在,断面扫描电镜分析表明:(1)夹层由颗粒状晶体(W5Si3)和片状晶体(WC)组成,片状晶片重叠为二级层状结构。(2)基体层(SiC层)的断裂方式为裂纹沿晶断裂,夹层的断裂方式有两种:一是裂纹沿颗粒状晶体的晶界的沿晶断裂,二是裂纹管过片状晶体的穿晶断裂,断口还观察到片状晶片的拨出。材料力学性能呈现的规律为:夹层厚度在10-50μm内,随夹层厚度的增加,断裂韧性增加,抗弯强度下降。 相似文献
5.
6.
采用质量分数为20%的连续玻璃纤维和质量分数为10%的短切玻璃纤维以模压工艺制备不饱和聚酯基复合材料,研究了纤维类型对复合材料模压工艺以及力学性能的影响,并与质量分数为30%连续纤维增强的不饱和聚酯基复合材料进行了对比。结果表明:与连续纤维增强不饱和聚酯基复合材料相比,连续纤维与短切纤维混合增强复合材料的拉伸性能和弯曲性能略有下降,但模压工艺性能和压缩性能有所提高,纤维在基体中分布较为均匀,纤维相互交叉,散乱分布。 相似文献
7.
采用热磨提取法提取麦秸纤维,研究了硅烷偶联荆种类、麦秸纤维含量以及相容剂MAPP含量对麦秸纤维与废旧聚丙烯问的界面相容性以及制备的复合材料力学性能的影响;用扫描电镜和三维体视显微镜观察了麦秸纤维的分散性以及复合材料冲击断口形貌.结果表明:经3%KH550处理后,麦秸纤维与废旧聚丙烯间的相容性得到明显改善,提高了复合材料的力学性能;当麦秸纤维质量分数为20%左右时,其在废旧聚丙烯基体中分散均匀,增强效果最佳;且当MAPP质量分数为8%左右时,材料的抗拉、抗弯以及抗冲击强度均达到最大值,分别为61.14MPa、68.25 MPa和11.25 kJ·m-2. 相似文献
8.
本文针对小规格(直径规格M3~M6)C/SiC复合材料紧固件,开展了螺纹加工和预制体结构优化研究,表征了紧固件的室温及高温力学性能,针对典型防隔热一体化结构,进行了连接受力仿真和螺钉选型,研究表明:磨削和硬质合金攻丝分别是C/SiC紧固件外螺纹和内螺纹的较优加工方式;螺钉、螺母分别建议选择以Type-3、Type-1为预制体的C/SiC材料加工;经测试,采用Type-3预制体的M6沉头螺钉在室温(25℃)、1100℃和1200℃条件下的抗拉强度分别为250MPa、230MPa和223MPa,抗拉强度随温度升高的衰减较小。 相似文献
9.
采用两种不同模齿宽度的模具分别对纯铜进行室温模压变形,研究了模齿宽度对纯铜可承受的模压道次、晶粒尺寸和力学性能的影响以及晶粒尺寸和力学性能随模压道次的变化。结果表明:模压变形可以有效地细化纯铜的晶粒,且在模齿宽度小的模具中模压变形后的合金有更小的晶粒尺寸和更快的细化速率;纯铜在不同模具下进行变形,都能显著地提高其强度和硬度;模齿宽度对纯铜模压变形后的硬度和强度影响不大,但模齿宽度增大可提高纯铜可承受的模压道次,在模齿宽度较小的模具中变形后合金具有稍高的硬度和稍低的屈服强度及伸长率。 相似文献
10.
真空压力浸渍法制备Gr/Mg复合材料 总被引:3,自引:0,他引:3
石墨纤维增强镁基复合材料具有优良的综合性能,本文采用真空压力浸渍工艺制备出高性能的Gr/Mg复合材料。通过实验发现,适当提高预制件温度和采用SiC颗粒混杂技术可明显改善预制件的浸渍情况和纤维分布的均匀度,当预测件温度适中时材料能获得最佳的力学性能,加入SiC颗粒后有利于力学性能的提高,预制件温度对材料的界面也有一定的影响。 相似文献
11.
12.
通过激光选区烧结技术和液相渗硅工艺制备了碳纤维增强碳化硅(Cf/SiC)复合材料。试样组织由C、SiC和Si三相组成,其密度和弯曲强度分别为2.89±0.01 g/cm3和237±9.8 MPa。采用UMT TriboLab多功能摩擦磨损试验机研究了Cf/SiC复合材料在不同载荷(10 N, 30 N, 50 N和70 N)条件下的摩擦学特性。研究结果表明:载荷较小(10 N)时,Cf/SiC复合材料的磨损由微凸起和SiC硬质点造成,磨损机制为磨粒磨损;载荷为30 N时,复合材料的摩擦磨损综合性能最好,其平均摩擦因数为0.564,磨损率低(5.24×10-7 cm3/(N·m)),主要磨损机制为犁削形成的磨粒磨损和黏结磨损。载荷增大到70N时,材料磨损严重,磨粒脱落形成凹坑,产生裂纹,其磨损率(8.68×10-7 cm3/(N·m))高,磨损机制主要为脆性剥落。 相似文献
13.
14.
15.
16.
17.
18.
19.
20.
Alumina/SiC nanocomposites were produced by mechanical mixture of commercial powders. The preparation steps involved the vigorous mixing of the powders and drying under conditions where the homogeneous mixture was kept stable. Pressureless sintering of die-pressed powders achieved reasonable densities (~97% theoretical density) for 2·5wt% of SiC on sintering at 2073 K. Higher SiC contents strongly reduced the sintered density. The use of a more reactive alumina (finer matrix powder) gave similar results. Hot pressing at 1973 K/1 h/25 MPa produced high-density materials for SiC contents as high as 20 wt%. Transmission and scanning electron microscopy analysis showed that the SiC particles were well distributed and were situated both inside the grains and on the grain boundaries of the alumina matrix. The SiC strongly inhibited grain growth in the matrix in keeping with the Zener model. The bend strength increased as the SiC content increased, a result partly explained by the grain size refinement. The strength improvement of 20% over monolithic was explained in terms of the change to an intergranular fracture mode. 相似文献