首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accurate and reliable estimation of fiber orientation distributions, based on diffusion-sensitized magnetic resonance images is a major prerequisite for tractography algorithms or any other derived statistical analysis. In this work, we formulate the principle of fiber continuity (FC), which is based on the simple observation that the imaging of fibrous tissue implies certain expectations for the measured images. From this principle we derive a prior for the estimation of fiber orientation distributions based on high angular resolution diffusion imaging (HARDI). We demonstrate on simulated, phantom, and in vivo data the superiority of the proposed approach. Further, we propose another application of the FC principle, named FC flow, a method to resolve complex crossing regions solely based on diffusion tensor imaging (DTI). The idea is to infer directional information in crossing regions from adjacent anisotropic areas.  相似文献   

2.
A new method to derive white matter conductivity from diffusion tensor MRI   总被引:1,自引:0,他引:1  
We propose a new algorithm to derive the anisotropic conductivity of the cerebral white matter (WM) from the diffusion tensor MRI (DT-MRI) data. The transportation processes for both water molecules and electrical charges are described through a common multicompartment model that consists of axons, glia, or the cerebrospinal fluid (CSF). The volume fraction (VF) of each compartment varies from voxel to voxel and is estimated from the measured diffusion tensor. The conductivity tensor at each voxel is then computed from the estimated VF values and the decomposed eigenvectors of the diffusion tensor. The proposed VF algorithm was applied to the DT-MRI data acquired from two healthy human subjects. The extracted anisotropic conductivity distribution was compared with those obtained by using two existing algorithms, which were based upon a linear conductivity-to-diffusivity relationship and a volume constraint, respectively. The present results suggest that the VF algorithm is capable of incorporating the partial volume effects of the CSF and the intravoxel fiber crossing structure, both of which are not addressed altogether by existing algorithms. Therefore, it holds potential to provide a more accurate estimate of the WM anisotropic conductivity, and may have important applications to neuroscience research or clinical applications in neurology and neurophysiology.   相似文献   

3.
In this paper, a nonrigid coregistration algorithm based on a viscous fluid model is proposed that has been optimized for diffusion tensor images (DTI), in which image correspondence is measured by the mutual information criterion. Several coregistration strategies are introduced and evaluated both on simulated data and on brain intersubject DTI data. Two tensor reorientation methods have been incorporated and quantitatively evaluated. Simulation as well as experimental results show that the proposed viscous fluid model can provide a high coregistration accuracy, although the tensor reorientation was observed to be highly sensitive to the local deformation field. Nevertheless, this coregistration method has demonstrated to significantly improve spatial alignment compared to affine image matching.  相似文献   

4.
Patient studies based on diffusion tensor images (DTI) require spatial correspondence between subjects. We propose to obtain the correspondence from white matter tracts, by introducing a new method for nonrigid matching of white matter fiber tracts in DTI. The method boils down to point set registration that involves simultaneously clustering and matching of the data points. The tracts are implicitly warped to a common frame of reference to avoid the potential bias toward one of the datasets. The algorithm gradually refines from global to local registration, which is implemented through deterministic annealing. Special care was taken to incorporate the spatial relation between fiber points and the uncertainty in principal diffusion orientation. As a result, the computed clusters are oriented along the fiber tracts and discriminate between adjacent but distinct fiber tracts. This is validated on synthetic and clinical data. The root-mean-squared distance with respect to expert-annotated landmarks is low (3 mm). In contrast to a state-of-the-art nonrigid registration technique, the proposed method is more robust to residual misalignments in terms of measured fractional anisotropy values.  相似文献   

5.
In recent years, diffusion tensor imaging (DTI) has become a popular in vivo diagnostic imaging technique in Radiological sciences. In order for this imaging technique to be more effective, proper image analysis techniques suited for analyzing these high dimensional data need to be developed. In this paper, we present a novel definition of tensor "distance" grounded in concepts from information theory and incorporate it in the segmentation of DTI. In a DTI, the symmetric positive definite (SPD) diffusion tensor at each voxel can be interpreted as the covariance matrix of a local Gaussian distribution. Thus, a natural measure of dissimilarity between SPD tensors would be the Kullback-Leibler (KL) divergence or its relative. We propose the square root of the J-divergence (symmetrized KL) between two Gaussian distributions corresponding to the diffusion tensors being compared and this leads to a novel closed form expression for the "distance" as well as the mean value of a DTI. Unlike the traditional Frobenius norm-based tensor distance, our "distance" is affine invariant, a desirable property in segmentation and many other applications. We then incorporate this new tensor "distance" in a region based active contour model for DTI segmentation. Synthetic and real data experiments are shown to depict the performance of the proposed model.  相似文献   

6.
Intensity-based 2-D-3-D registration of cerebral angiograms   总被引:4,自引:0,他引:4  
We propose a new method for aligning three-dimensional (3-D) magnetic resonance angiography (MRA) with 2-D X-ray digital subtraction angiograms (DSA). Our method is developed from our algorithm to register computed tomography volumes to X-ray images based on intensity matching of digitally reconstructed radiographs (DRRs). To make the DSA and DRR more similar, we transform the MRA images to images of the vasculature and set to zero the contralateral side of the MRA to that imaged with DSA. We initialize the search for a match on a user defined circular region of interest. We have tested six similarity measures using both unsegmented MRA and three segmentation variants of the MRA. Registrations were carried out on images of a physical neuro-vascular phantom and images obtained during four neuro-vascular interventions. The most accurate and robust registrations were obtained using the pattern intensity, gradient difference, and gradient correlation similarity measures, when used in conjunction with the most sophisticated MRA segmentations. Using these measures, 95% of the phantom start positions and 82% of the clinical start positions were successfully registered. The lowest root mean square reprojection errors were 1.3 mm (standard deviation 0.6) for the phantom and 1.5 mm (standard deviation 0.9) for the clinical data sets. Finally, we present a novel method for the comparison of similarity measure performance using a technique borrowed from receiver operator characteristic analysis.  相似文献   

7.
We created a method for three-dimensional (3-D) registration of medical images (e.g., magnetic resonance imaging (MRI) or computed tomography) to images of physical tissue sections or to other medical images and evaluated its accuracy. Our method proved valuable for evaluation of animal model experiments on interventional-MRI guided thermal ablation and on a new localized drug delivery system. The method computes an optimum set of rigid body registration parameters by minimization of the Euclidean distances between automatically chosen correspondence points, along manually selected fiducial needle paths, and optional point landmarks, using the iterative closest point algorithm. For numerically simulated experiments, using two needle paths over a range of needle orientations, mean voxel displacement errors depended mostly on needle localization error when the angle between needles was at least 20 degrees. For parameters typical of our in vivo experiments, the mean voxel displacement error was < 0.35 mm. In addition, we determined that the distance objective function was a useful diagnostic for predicting registration quality. To evaluate the registration quality of physical specimens, we computed the misregistration for a needle not considered during the optimization procedure. We registered an ex vivo sheep brain MR volume with another MR volume and tissue section photographs, using various combinations of needle and point landmarks. Mean registration error was always < or = 0.54 mm for MR-to-MR registrations and < or = 0.52 mm for MR to tissue section registrations. We also applied the method to correlate MR volumes of radio-frequency induced thermal ablation lesions with actual tissue destruction. In this case, in vivo rabbit thigh volumes were registered to photographs of ex vivo tissue sections using two needle paths. Mean registration errors were between 0.7 and 1.36 mm over all rabbits, the largest error less than two MR voxel widths. We conclude that our method provides sufficient spatial correspondence to facilitate comparison of 3-D image data with data from gross pathology tissue sections and histology.  相似文献   

8.
A method is presented for determining paths of anatomical connection between regions of the brain using magnetic resonance diffusion tensor information. Level set theory, applied using fast marching methods, is used to generate three-dimensional time of arrival maps, from which connection paths between brain regions may be identified. The method is demonstrated in the normal brain and it is shown that major white matter tracts may be elucidated and that multiple connections and tract branching are allowed. Maps of connectivity between brain regions are also determined. Four options are described for estimating the degree of connectivity between regions.  相似文献   

9.
We address the problem of the segmentation of cerebral white matter structures from diffusion tensor images (DTI). A DTI produces, from a set of diffusion-weighted MR images, tensor-valued images where each voxel is assigned with a 3 x 3 symmetric, positive-definite matrix. This second order tensor is simply the covariance matrix of a local Gaussian process, with zero-mean, modeling the average motion of water molecules. As we will show in this paper, the definition of a dissimilarity measure and statistics between such quantities is a nontrivial task which must be tackled carefully. We claim and demonstrate that, by using the theoretically well-founded differential geometrical properties of the manifold of multivariate normal distributions, it is possible to improve the quality of the segmentation results obtained with other dissimilarity measures such as the Euclidean distance or the Kullback-Leibler divergence. The main goal of this paper is to prove that the choice of the probability metric, i.e., the dissimilarity measure, has a deep impact on the tensor statistics and, hence, on the achieved results. We introduce a variational formulation, in the level-set framework, to estimate the optimal segmentation of a DTI according to the following hypothesis: Diffusion tensors exhibit a Gaussian distribution in the different partitions. We must also respect the geometric constraints imposed by the interfaces existing among the cerebral structures and detected by the gradient of the DTI. We show how to express all the statistical quantities for the different probability metrics. We validate and compare the results obtained on various synthetic data-sets, a biological rat spinal cord phantom and human brain DTIs.  相似文献   

10.
Fluid registration of diffusion tensor images using information theory   总被引:2,自引:0,他引:2  
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.  相似文献   

11.
Computing the morphological similarity of diffusion tensors (DTs) at neighboring voxels within a DT image, or at corresponding locations across different DT images, is a fundamental and ubiquitous operation in the postprocessing of DT images. The morphological similarity of DTs typically has been computed using either the principal directions (PDs) of DTs (i.e., the direction along which water molecules diffuse preferentially) or their tensor elements. Although comparing PDs allows the similarity of one morphological feature of DTs to be visualized directly in eigenspace, this method takes into account only a single eigenvector, and it is therefore sensitive to the presence of noise in the images that can introduce error intothe estimation of that vector. Although comparing tensor elements, rather than PDs, is comparatively more robust to the effects of noise, the individual elements of a given tensor do not directly reflect the diffusion properties of water molecules. We propose a measure for computing the morphological similarity of DTs that uses both their eigenvalues and eigenvectors, and that also accounts for the noise levels present in DT images. Our measure presupposes that DTs in a homogeneous region within or across DT images are random perturbations of one another in the presence of noise. The similarity values that are computed using our method are smooth (in the sense that small changes in eigenvalues and eigenvectors cause only small changes in similarity), and they are symmetric when differences in eigenvalues and eigenvectors are also symmetric. In addition, our method does not presuppose that the corresponding eigenvectors across two DTs have been identified accurately, an assumption that is problematic in the presence of noise. Because we compute the similarity between DTs using their eigenspace components, our similarity measure relates directly to both the magnitude and the direction of the diffusion of water molecules. The favorable performance characteristics of our measure offer the prospect of substantially improving additional postprocessing operations that are commonly performed on DTI datasets, such as image segmentation, fiber tracking, noise filtering, and spatial normalization.  相似文献   

12.
An improved method for the combination of signals from array coils is presented as a way to reduce the influence of the noise floor on the estimation of diffusion tensor imaging (DTI) parameters. By an optimized combination of signals from the array channels and complex averaging of measurements, this method leads to a significant reduction of the noise bias. This combination algorithm allows computation of accurate tensors by using the simple two point method and is shown to provide results similar to the ones obtained using the standard signal combination and a nonlinear regression method with noise parameter estimation. In many applications, the use of this combination method would result in a scan time reduction in comparison to the current standard. The effects of the improved combination on diffusion decay curves, fractional anisotropy maps, and apparent diffusion coefficient (ADC) profiles are demonstrated.  相似文献   

13.
Rapid elastic image registration for 3-D ultrasound   总被引:7,自引:0,他引:7  
A Subvolume-based algorithm for elastic Ultrasound REgistration (SURE) was developed and evaluated. Designed primarily to improve spatial resolution in three-dimensional compound imaging, the algorithm registers individual image volumes nonlinearly before combination into compound volumes. SURE works in one or two stages, optionally using MIAMI Fuse software first to determine a global affine registration before iteratively dividing the volume into subvolumes and computing local rigid registrations in the second stage. Connectivity of the entire volume is ensured by global interpolation using thin-plate splines after each iteration. The performance of SURE was quantified in 20 synthetically deformed in vivo ultrasound volumes, and in two phantom scans, one of which was distorted at acquisition by placing an aberrating layer in the sound path. The aberrating layer was designed to induce beam aberrations reported for the female breast. Synthetic deformations of 1.5-2.5 mm were reduced by over 85% when SURE was applied to register the distorted image volumes with the original ones. Registration times were below 5 min on a 500-MHz CPU for an average data set size of 13 MB. In the aberrated phantom scans, SURE reduced the average deformation between the two volumes from 1.01 to 0.30 mm. This was a statistically significant (P = 0.01) improvement over rigid and affine registration transformations, which produced reductions to 0.59 and 0.50 mm, respectively.  相似文献   

14.
为了解决传统DTI图像分割中更细致边缘信息的丢失问题,提出了新的张量形态学梯度参数,并基于张量相似性形态学梯度和各向异性形态学梯度,采用标记的分水岭算法对DTI图像进行分割.通过对人脑胼胝体图像的分割实验表明,利用新参数TMG-l2和TMG-RA能够更加快速、准确地对DTI图像进行细致边缘轮廓的定位和分割,保护了重要分割区域的边缘信息.  相似文献   

15.
It is important to detect and extract the major cortical sulci from brain images, but manually annotating these sulci is a time-consuming task and requires the labeler to follow complex protocols. This paper proposes a learning-based algorithm for automated extraction of the major cortical sulci from magnetic resonance imaging (MRI) volumes and cortical surfaces. Unlike alternative methods for detecting the major cortical sulci, which use a small number of predefined rules based on properties of the cortical surface such as the mean curvature, our approach learns a discriminative model using the probabilistic boosting tree algorithm (PBT). PBT is a supervised learning approach which selects and combines hundreds of features at different scales, such as curvatures, gradients and shape index. Our method can be applied to either MRI volumes or cortical surfaces. It first outputs a probability map which indicates how likely each voxel lies on a major sulcal curve. Next, it applies dynamic programming to extract the best curve based on the probability map and a shape prior. The algorithm has almost no parameters to tune for extracting different major sulci. It is very fast (it runs in under 1 min per sulcus including the time to compute the discriminative models) due to efficient implementation of the features (e.g., using the integral volume to rapidly compute the responses of 3-D Haar filters). Because the algorithm can be applied to MRI volumes directly, there is no need to perform preprocessing such as tissue segmentation or mapping to a canonical space. The learning aspect of our approach makes the system very flexible and general. For illustration, we use volumes of the right hemisphere with several major cortical sulci manually labeled. The algorithm is tested on two groups of data, including some brains from patients with Williams Syndrome, and the results are very encouraging.  相似文献   

16.
Diffeomorphic image registration of diffusion MRI using spherical harmonics   总被引:1,自引:0,他引:1  
Nonrigid registration of diffusion magnetic resonance imaging (MRI) is crucial for group analyses and building white matter and fiber tract atlases. Most current diffusion MRI registration techniques are limited to the alignment of diffusion tensor imaging (DTI) data. We propose a novel diffeomorphic registration method for high angular resolution diffusion images by mapping their orientation distribution functions (ODFs). ODFs can be reconstructed using q-ball imaging (QBI) techniques and represented by spherical harmonics (SHs) to resolve intra-voxel fiber crossings. The registration is based on optimizing a diffeomorphic demons cost function. Unlike scalar images, deforming ODF maps requires ODF reorientation to maintain its consistency with the local fiber orientations. Our method simultaneously reorients the ODFs by computing a Wigner rotation matrix at each voxel, and applies it to the SH coefficients during registration. Rotation of the coefficients avoids the estimation of principal directions, which has no analytical solution and is time consuming. The proposed method was validated on both simulated and real data sets with various metrics, which include the distance between the estimated and simulated transformation fields, the standard deviation of the general fractional anisotropy and the directional consistency of the deformed and reference images. The registration performance using SHs with different maximum orders were compared using these metrics. Results show that the diffeomorphic registration improved the affine alignment, and registration using SHs with higher order SHs further improved the registration accuracy by reducing the shape difference and improving the directional consistency of the registered and reference ODF maps.  相似文献   

17.
Diffusion-weighted magnetic resonance imaging MRI) and especially diffusion tensor imaging (DTI) have proven to be useful for the characterization of the microstructure of brain white matter structures in vivo. However, DTI suffers from a number of limitations in characterizing more complex situations. The most notable problem occurs when multiple fibre bundles are present within a voxel. In this paper, we have expanded the existing Q-ball imaging method to a Bayesian framework in order to fully characterize the uncertainty around the fibre directions, given the quality of the data. We have done this by using a recently proposed spherical harmonics decomposition of the diffusion-weighted signal and the resulting Q-ball orientation distribution function. Moreover, we have incorporated a model selection procedure which determines the appropriate smoothness of the orientation distribution function from the data. We show by simulation that our framework can indeed characterize the posterior probability of the fibre directions in cases with multiple fibre populations per voxel and have provided examples of the algorithm's performance on real data where this situation is known to occur.  相似文献   

18.
The comparison of images of a patient to a reference standard may enable the identification of structural brain changes. These comparisons may involve the use of vector or tensor images (i.e., 3-D images for which each voxel can be represented as an ${BBR}^N$ vector) such as diffusion tensor images (DTI) or transformations. The recent introduction of the Log-Euclidean framework for diffeomorphisms and tensors has greatly simplified the use of these images by allowing all the computations to be performed on a vector-space. However, many sources can result in a bias in the images, including disease or imaging artifacts. In order to estimate and compensate for these sources of variability, we developed a new algorithm, called continuous STAPLE, that estimates the reference standard underlying a set of vector images. This method, based on an expectation-maximization method similar in principle to the validation method STAPLE, also estimates for each image a set of parameters characterizing their bias and variance with respect to the reference standard. We demonstrate how to use these parameters for the detection of atypical images or outliers in the population under study. We identified significant differences between the tensors of diffusion images of multiple sclerosis patients and those of control subjects in the vicinity of lesions.   相似文献   

19.
Techniques of three-dimensional (3-D) volume delineation from tomographic medical imaging are usually based on 2-D contour definition. For a given structure, several different contours can be obtained depending on the segmentation method used or the user's choice. The goal of this work is to develop a new method that reduces the inaccuracies generally observed. A minimum volume that is certain to be included in the volume concerned (membership degree mu = 1), and a maximum volume outside which no part of the volume is expected to be found (membership degree mu = 0), are defined semi-automatically. The intermediate fuzziness region (0 < mu < 1) is processed using the theory of possibility. The resulting fuzzy volume is obtained after data fusion from multiplanar slices. The influence of the contrast-to-noise ratio was tested on simulated images. The influence of slice thickness as well as the accuracy of the method were studied on phantoms. The absolute volume error was less than 2% for phantom volumes of 2-8 cm3, whereas the values obtained with conventional methods were much larger than the actual volumes. Clinical experiments were conducted, and the fuzzy logic method gave a volume lower than that obtained with the conventional method. Our fuzzy logic method allows volumes to be determined with better accuracy and reproducibility.  相似文献   

20.
Image restoration and simplification methods that respect important features such as edges play a fundamental role in digital image processing. However, known edge-preserving methods like common nonlinear diffusion methods tend to round vertices for large diffusion times. In this paper, we adapt the diffusion tensor for anisotropic diffusion to avoid this effects in images containing rotated and sheared rectangles, respectively. In this context, we propose a new method for estimating rotation angles and shear parameters based on the so-called structure tensor. Further, we show how the knowledge of appropriate diffusion tensors can be used in variational models. Numerical examples including orientation estimation, denoising and segmentation demonstrate the good performance of our methods.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号