首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
AZ31镁合金薄壁管挤压成形过程有限元模拟   总被引:1,自引:0,他引:1  
采用Gleeble-1500热-力学模拟试验机进行等温压缩实验所得AZ31镁合金应力--应变数据,建立材料变形的数学模型,拟合出材料温成形应力--应变曲线.应用有限元法模拟AZ31镁合金薄壁管的挤压成形,坯料的成形流变性能按其数学模型施加于MSC-Superform的材料库中,其中着重探讨AZ31镁合金挤压成形过程中,温度、速度、润滑以及模具形状等因素对金属流动的影响,为管类零件挤压成形工艺提供科学的依据.  相似文献   

2.
对镁合金正挤压-扭转成形进行了工艺参数的有限元模拟,分析了扭转剪切变形对AZ31镁合金在成形过程中等效应变和挤压力的影响。结果表明:随着挤压温度的降低,挤压速度和摩擦系数的升高,坯料所获得的等效应变显著升高。正挤压-扭转变形可以显著提高坯料变形过程的等效应变,并改善变形的均匀性。经正挤压-扭转变形后,AZ31镁合金的塑性应变高达4.5。工艺参数的有限元分析能为AZ31镁合金正挤压-扭转变形的实际生产提供重要参考。  相似文献   

3.
利用DEFORM-3D软件对AZ31镁合金扩管挤压成形过程进行了数值模拟,分析了不同温度和不同模具角度对成形挤压力的影响.结果表明,温度越高,挤压力越小;在给定的工艺参数下,得到了最佳模具角度,使得挤压力最小.数值模拟计算出的挤压力可以为挤压设备的选择提供依据.选取合适的挤压温度和最佳模具角度进行了挤压模拟,得到了挤压过程中等效应力场、等效应变场等的变化过程和分布规律,发现内外模具圆角处的应力应变值最大.分析了产生的原因,这能为模具优化提供参考.  相似文献   

4.
《铸造技术》2017,(7):1666-1669
采用Deform-3D有限元软件,在挤压温度为250~400℃条件下,对AZ31镁合金等径角挤压工艺进行了数值模拟,主要分析塑形成型过程中的挤压载荷、等效应力和等效应变的变化规律。结果表明,AZ31镁合金塑形成型过程中挤压载荷分为3个阶段:无明显变形阶段、快速增长阶段和稳定变形阶段。挤压载荷随着挤压温度的增加显著下降,试样的等效应力分布不均,模具转角处等效应力较大,存在应力集中现象,等效应变逐渐增加,在转角剪切区最大。试样经过ECAP变形后,心部等效应变大,从内向外应变呈减小的趋势,试样上部等效应变较大,下部等效应变相对较小,组织均匀性较好。  相似文献   

5.
AZ31镁合金散热器等温挤压成形金属流动规律研究   总被引:2,自引:0,他引:2  
根据等温压缩实验所得AZ31变形镁合金应力-应变数据,通过回归法得出材料温成形数学模型,应用刚塑性有限元法模拟AZ31变形镁合金散热器等温挤压成形,着重探讨AZ31变形镁合金等温挤压成形过程中,变形力及金属流动规律.根据模拟得到的应力场、应变场、速度场及加载变化等,也可预测变形时产生的缺陷,为该类零件等温挤压成形工艺提供科学的依据.  相似文献   

6.
用有限元模拟软件Deform-3D对5号AZ31镁合金电池筒反挤压成形过程进行仿真模拟,完成了模具的设计,分析了挤压坯料温度与挤压速度对反挤压成形过程的影响,探讨了电池筒损伤极值、等效应变极值、等效应力极值以及模具温度场中最高温度的变化。结果表明,在相同挤压速度下(145 mm/s),随着挤压坯料温度的升高,电池筒的损伤极值不断增大,等效应变极值先下降后上升,等效应力极值不断下降,模具温度场中最高温度不断升高,并在60℃的挤压坯料温度下,损伤极值最低。在相同挤压温度下,随着冲模挤压速度的升高,损伤极值先增大后减小,等效应变极值不断降低,等效应力极值不断增大,最高温度不断增大,在145 mm/s的挤压速度下,损伤极值最小值。选取不同挤压坯料温度与挤压速度进行正交试验,获得最优的工艺参数,并以此参数进行反挤压试验,获得组织较均匀的5号AZ31镁合金电池筒。  相似文献   

7.
基于Deform-3D与AZ31镁合金材料模型对1号镁合金电池筒的反挤压成形过程进行数值模拟,完成模具设计及各工艺参数下反挤压成形过程的对比优化。结果表明:在相同挤压速度下,随挤压温度升高,等效应力峰值不断降低,等效应变峰值不断升高,温度场向高温区推进,并在280℃时,损伤值降至最低,说明在该温度下AZ31镁合金反挤压过程的破损率最小;另外,在280℃下,随着挤压速度的提高,等效应力场峰值不断减小,等效应变场峰值增大,温度场峰值向高温区推进,并在12 mm·s-1的挤压速度下达到损伤极值最小值。根据优化工艺进行反挤压成形试验验证,生产出了合格的产,品且筒壁组织均匀细化。  相似文献   

8.
AZ31镁合金等通道转角挤压变形均匀性有限元分析   总被引:2,自引:0,他引:2  
以AZ31镁合金为研究对象,通过对不同模具外角ECAP变形过程的有限元模拟,研究不同模具外角下AZ31镁合金ECAP变形的等效应变分布.利用微观组织观察以及硬度测试,分析等效应变分布对微观组织及力学性能影响.结果表明:当模具外角ψ为20.时,工件可以获得均匀的等效应变分布.AZ31镁合金经过ECAP挤压后,微观组织显著细化,力学性能明显改善,但平均晶粒尺寸及微观维氏硬度在工件横截面上分布不均匀,等效应变分布的不均匀性是导致材料微观组织和力学性能不均匀的主要因素之一.  相似文献   

9.
AZ80镁合金变形特性及管材挤压数值模拟研究   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机研究了AZ80合金的高温变形特性。结果表明,流变应力取决于变形温度和变形速率。当应变速率一定时,流变应力随变形温度的升高而降低;当温度一定时,流变应力随着应变速率的升高而增大。根据AZ80镁合金真应力-真应变曲线,建立了其流变应力模型。采用刚塑性有限元法对AZ80镁合金管材挤压过程进行热力耦合数值模拟,并分析了高温挤压成形过程中变形力及金属流动规律,着重探讨了变形温度和挤压速度等挤压工艺参数对挤压力、应变场以及应力场的分布及变化情况的影响。模拟的结果为AZ80镁合金管材挤压工艺参数的制定、优化提供了科学依据。  相似文献   

10.
以AZ31镁合金为研究对象,对其进行了双向挤压与等通道复合变形模型的数值模拟计算,分析了模具转角对金属流动状态、等效应力、应变与挤压力的影响,并定量的分析了等效应变分布的不均匀程度。结果表明:AZ31镁合金经过双向挤压与等通道复合变形后发生了剧烈的塑性变形,应力主要集中在模具转角剪切区,且能有效的获得高的均匀等效应变值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号