首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stainless steel plate with 30mm in length, 1 mm in width and 0.1 mm in thickness is employed for a heating surface in subcooled quasi-pool boiling of water under low gravity performed by a parabolic flight. Testing liquid subcooling is about 10K at atmospheric pressure. The wetting heating surfaces are coated with ceramics materials which have been developed by a certain glass company. DC power is applied directly into the test heating surface and the bubble behaviors are observed by a high-speed video camera. Contact angle of water droplet is about 77–96 degree for the stainless surface and 30 degree or less for the wetting surface. In the ground experiment, the size of detaching bubbles from the wetting surface is smaller than those of stainless surface and the detaching period is shorter at same heating power. The burnout heat fluxes of wetting surfaces are about 50 percent higher those of stainless surfaces. In the low gravity experiment, DC power is applied into the surface at 10 second before start of low gravity and increases slightly until burnout. A single large bubble grows on the stainless surface and finally, the surface is burned out in a short period. For wetting surface, several large coalescing bubbles appear and they move rapidly on the surface, then one of the large bubbles grows and the burnout occurs. The burnout heat fluxes are higher than those of stainless surface. The wetting ceramics surface is considered to accelerate the liquid supply and the bubble moving.  相似文献   

2.
This study reports the pattern definable and low cost fabrication of nanopatterned conducting polymer film on flexible substrates. Noble nanopatterned polymer hard template was fabricated by using nanoimprint lithography (NIL) and used for electropolymerization of conducting polymer. Conducting polymer was electrochemically deposited on the template and transferred over to flexible substrates. Eventually conducting polymer films with various nanopatterns were fabricated on flexible substrates. High pattern definability was achieved by nanoimprinted polymer template, which was molded from lithographically fabricated stamp. Low cost fabrication was accomplished due to low cost NIL, reusable polymer templates, and low material consumption of electrodeposition. The electrodeposited films were transferred using double sided tape. Because the templates are made of flexible polymer, the transfer bonding method applied in this study is adaptable to both wafers and flexible polymer substrates. The fabricated nanopatterned conducting polymer film can be applied to gas sensors, super capacitors, super wetting films, and neuron interfaces due to its characteristic of high surface to volume. For an illustrative application, the gas sensing properties of films were tested. The result showed enhanced sensing characteristic with nanopatterned film, which are attributed to the high surface to volume ratio of nanopatterned films.  相似文献   

3.
Reliable characterization of wetting properties is essential for the development and optimization of superhydrophobic surfaces. Here, the dynamics of superhydrophobicity is studied including droplet friction and wetting transitions by using droplet oscillations on micropillared surfaces. Analyzing droplet oscillations by high‐speed camera makes it possible to obtain energy dissipation parameters such as contact angle hysteresis force and viscous damping coefficients, which indicate pinning and viscous losses, respectively. It is shown that the dissipative forces increase with increasing solid fraction and magnetic force. For 10 µm diameter pillars, the solid fraction range within which droplet oscillations are possible is between 0.97% and 2.18%. Beyond the upper limit, the oscillations become heavily damped due to high friction force. Below the lower limit, the droplet is no longer supported by the pillar tops and undergoes a Cassie–Wenzel transition. This transition is found to occur at lower pressure for a moving droplet than for a static droplet. The findings can help to optimize micropillared surfaces for low‐friction droplet transport.  相似文献   

4.
The wetting properties of water nanodroplets on a gold substrate are studied using molecular dynamics (MD) simulations. The effects of temperature, droplet size, and surface roughness are evaluated in terms of molecular trajectories, internal energy, dynamic contact angle, and the radial distribution function. The simulation results show that the wetting ability and spreading speed of water greatly increases with increasing temperature. The dynamic contact angle of water on the gold substrate decreases with increasing temperature and decreasing droplet size and surface roughness, which leads to an increase in wetting ability. The compactness of a water droplet increases with decreasing temperature and droplet size, and slightly increases with degree of roughness. The internal energy of a water droplet decreases with increasing surface roughness, indicating that droplets form more stably on a rough surface.  相似文献   

5.
Deposited small particles change their position and can build aggregates on surfaces when wetted/dewetted. The size and form of these aggregates depend on the amount of water condensed, the form of the particles and the contact angles. Experiments with glass spheres and quartz particles on three different surfaces with water as wetting liquid were carried out. Results of the wetting/dewetting experiments are shown and discussed. A model is presented to estimate the magnitude of involved forces and the displacement of the particles taking into account contact angles, amount of condensed water, and size of particles. The model explains, why particles, as observed, tend to gather near the edge of a droplet at small surface contact angles and near the droplet center at high surface contact angles.  相似文献   

6.
The presence of nanobubbles-as imaged with tapping-mode atomic force microscopy-is controlled using nanopatterned surfaces possessing repeating patterns of polystyrene (hydrophobic domains) and poly(methyl methacrylate) (hydrophilic domains). For nanobubbles to be present, we find that, in addition to controlling the degree of surface hydrophobicity, it is important for the spatial dimensions of the hydrophobic domains on the nanopatterned surface to be commensurate with the equilibrium topology of the nanobubbles.  相似文献   

7.
We derive coarse-grained potentials to describe the interaction of a physically adsorbed, fluid-phase atom with a solid surface that is patterned with an array of rectangular or cylindrical pillars. The coarse-grained potentials are used in molecular dynamics simulations to probe the wetting of a Lennard-Jones liquid droplet on various patterned solid surfaces. Our results, which indicate that surface patterning can significantly influence wetting, are in agreement with previous studies.  相似文献   

8.
ABSTRACT

Deposited small particles change their position and can build aggregates on surfaces when wetted/dewetted. The size and form of these aggregates depend on the amount of water condensed, the form of the particles and the contact angles. Experiments with glass spheres and quartz particles on three different surfaces with water as wetting liquid were carried out. Results of the wetting/dewetting experiments are shown and discussed. A model is presented to estimate the magnitude of involved forces and the displacement of the particles taking into account contact angles, amount of condensed water, and size of particles. The model explains, why particles, as observed, tend to gather near the edge of a droplet at small surface contact angles and near the droplet center at high surface contact angles.  相似文献   

9.
Molecular dynamics calculations have been used to investigate the behavior of overlayers of water or n-alkane fluids on solid surfaces formed from “self-assembled” monolayers of long-chain hydrocarbons. A microscopic analog of the wetting contact angle is used to measure the surface wetting characteristics. On a nonpolar surface, formed by close packed chains having -CH3 tailgroups, the water molecules aggregate to form a compact droplet. The calculated contact angle of the droplet is similar to experimental values for macroscopic water droplets. Contrary to intuition, the overlayers of hexadecane or decane form droplets with smaller contact angles on the same surface. However, the calculated contact angles are again in reasonable accord with experimental values.  相似文献   

10.
The wetting and reaction between Si melt and SiO2 substrate were investigated as a function of the atmosphere, temperature, and degree of vacuum. The results revealed that below 2 Torr with an Ar flow, the wetting angle is finally 90°. The Si droplet was stationary at a wetting angle of 90°. Videos indicated that the droplets moved and vibrated; Above 20 Torr, the Si droplet vibrated up and down with a frequency of approximately 2 Hz, thereby changing the wetting angle. Further, the droplet remained stationary on a substrate on which grooves with a width of 100 μm and depth of 100 μm were etched with a pitch of 1 mm. The presence of grooves or dimples on the substrates facilitated the leakage of SiO gas; as a result, the Si droplet did not vibrate. A vibration model was proposed in which the SiO gas produced at the interface between the Si droplet and the substrate according to the reaction Si + SiO = 2SiO expands and leaks continuously.  相似文献   

11.
We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces.  相似文献   

12.
Unidirectional wetting surfaces can cause liquid droplets to flow/move in one direction while pinning them in the other directions, a feature that is useful for biosensing, adhesives, thermal management, and microfluidics. Such surfaces can be fabricated by employing structurally or chemically asymmetric nanostructures. While unidirectional wetting in the hydrophobic Wenzel regime had previously been observed on surfaces decorated with chemically asymmetric nanostructures, it has yet to be demonstrated on structurally asymmetric nanostructures. Based on the current understanding of the phenomenon, this can only be achieved using highly bent nanowires. Here, evidence to the contrary is provided by showing that mildly bent nanowires can also bring about unidirectional wetting in the hydrophobic Wenzel regime, even for contact angles beyond the superhydrophobic limit. Using NaCl precipitation, the unidirectional wetting mechanism is analyzed on a nanoscale level and it is found that the criteria for unidirectional wetting to take place in the hydrophobic Wenzel regime are different from that in the hydrophilic Wenzel regime. Moreover, it is revealed that slight wetting in the pinned direction can be caused by large scale deformation of high aspect ratio nanostructures during droplet spreading, which may be part of the reason behind previous observations of near‐unidirectional wetting on bent nanowires with high aspect ratios.  相似文献   

13.
As well known, the spreading of a liquid metal droplet on a solid metal is very sensitive to the presence of chemical heterogeneities on the solid metal. In this study, wetting experiments with liquid lead on heterogeneous surfaces composed of iron and silicon oxide particles or films were performed using the dispensed drop technique. High purity iron and binary iron–silicon substrates with different silicon contents were studied. Before the wetting experiments, the substrates are annealed at 850 °C in a N2–H2 atmosphere in order to reduce iron oxides and to form silicon oxide particles or films on the surface. The liquid lead droplet is then released onto the metallic substrate partly or wholly covered by the oxides. The spreading of the liquid metal droplet strongly depends on the surface area fraction covered by the oxides.  相似文献   

14.
The coexistence of a liquid with a solid and a gas phase causes a contact angle at the triple line and results in a certain work of adhesion. These properties were studied for liquid Al, Cu, and their alloys on single-crystalline sapphire surfaces with C(0001)-, A(11-20)-, and R(1-102)- orientation. Measurements were performed at 1100 °C and under $3 \cdot 10^4\, \hbox{Pa}$ Ar atmosphere in a sessile drop apparatus. There, the sample was heated and melted separately from the substrate within a drop dispenser. Only after the desired measurement conditions were reached, the liquid metal was released. Depending on the alloy composition, the wetting angle approached a constant value within few minutes after the contact of droplet and substrate was established: For pure Cu the contact angle increased to an equilibrium value of 116° ± 5°, which is identical for all the studied sapphire surfaces. For pure Al an anisotropy of the contact angle with regard to these surfaces is found: time evolution of the Al contact angle is only observed for wetting of C-surfaces. Wetting of A- and R-surfaces shows no pronounced time dependence. In these cases, a smaller contact angle of about 90° is observed. Wetting of the different sapphire surfaces by Al–Cu alloys corresponds qualitatively to their wetting by pure Al: again, only for C-surfaces a time-dependent increase of the contact angle is observed. On A- and R-surfaces wetting is not time-dependent and the contact angle increases with Cu content of the alloy.  相似文献   

15.
We report on the fabrication of chemically nanopatterned gold surfaces by combining electron-beam lithography with gas and liquid phase thiolization. The line-edge roughness of the patterns is ~4?nm, corresponding to a limiting feature size in the range of 15?nm. Indications for a lower packing density of the self-assembled monolayers grown in the nanofeatures are given, and evidences for the bleeding of thiols along the grain boundaries of the gold substrate are displayed. A comparison is provided between nanopatterned thiol and silane monolayers on gold and on silicon wafers, respectively. The line-edge roughnesses are shown to be close to each other for these two systems, indicating that the limiting step is currently the lithography step, suggesting possible improvement of the resolution. The advantages and drawbacks of thiol versus silane monolayers are finally discussed with respect to the formation of chemically nanopatterned surfaces.  相似文献   

16.
H. Wang  R. Wei 《Thin solid films》2009,518(5):1571-9828
Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is used to produce micro/nano-textured surfaces on stainless steel substrates at low temperatures for altering the wetting property of the substrates. The micro/nano-textured surfaces were characterized using scanning electron microscopy, X-ray spectroscopy, and X-ray diffraction. The wetting properties of the textured surfaces were characterized by water contact angle measurements. It was found that AIC of a-Si changes the apparent contact angles of stainless steel substrates from 90° to about 0°, measured 0.5 s after a water droplet drops on the surfaces. The study also shows that a superhydrophilic textured surface can be converted to a highly hydrophobic surface with an apparent contact angle of 145° by coating the surface with a layer of octadecyltrichlorosilane.  相似文献   

17.
The influence of surface roughness on the equilibrium spreading of liquids on aluminium and stainless steel surfaces with well-characterized rough machine finishes and a well-defined technique of attaining liquid drop equilibrium has been experimentally studied. The surfaces were prepared under practical conditions, i.e. without rigorous purification or attempting to eliminate anisotropy or microheterogeneities in surface-free energy. Depending on the type of roughness, i.e. spiral-grooved, radial-grooved and porous, the advancing contact angle was in approximate agreement with one of the classical contact angle/surface roughness equations. Capillary channelling along machine grooves profoundly affected the spreading and wetting behaviour and was highly dependent on the orientation and texture of roughness. Although the observed spreading was generally smooth on all surfaces it was probable that microscopic surface asperities produce small-scale non-equilibrium contact line movements and are responsible for the extensive wetting hysteresis during drop retraction.  相似文献   

18.
Journal of Materials Science - Improving the mechanical polishing of engineering surfaces in terms of the wetting and droplet evaporation theories is important for increasing the efficiency of...  相似文献   

19.
The apparent contact angles of a droplet deposited on the surfaces of thermal-bonded nonwoven fabrics were presented, and the characteristics required for a superhydrophobic surface were described. For a nonwoven superhydrophobic surface, the Cassie–Baxter model describes the wetting of rough surfaces. Using topological and chemical surface modifications of nylon 6,6 nonwoven fabric, artificial Lotus leaves having water contact angles >150° were prepared. Good agreement between the predictions based on the original Cassie–Baxter model and experiments was obtained. The angle at which a water droplet rolls off the surface has also been used to define a superhydrophobic surface. Superhydrophobic surfaces were prepared by two criteria: a low-surface energy and a properly designed surface roughness.  相似文献   

20.
Droplet impact and equilibrium contact angle have been extensively studied. However, solidification contact angle, which is the final contact angle formed by molten droplets impacting on cold surfaces, has never been a study focus. The formation of this type of contact angle was investigated by experimentally studying the deposition of micro-size droplets (∼39 μm in diameter) of molten wax ink on cold solid surfaces. Scanning Electron Microscope (SEM) was used to visualize dots formed by droplets impacted under various impact conditions, and parameters varied included droplet initial temperature, substrate temperature, flight distance of droplet, and type of substrate surface. It was found that the solidification contact angle was not single-valued for given droplet and substrate materials and substrate temperature, but was strongly dependent on the impact history of droplet. The angle decreased with increasing substrate and droplet temperatures. Smaller angles were formed on the surface with high wettability, and this wetting effect increased with increasing substrate temperature. Applying oil lubricant to solid surfaces could change solidification contact angle by affecting the local fluid dynamics near the contact line of spreading droplets. Assuming final shape as hemispheres did not give correct data of contact angles, since the final shape of deposited droplets significantly differs from a hemispherical shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号