首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究了C-Mn-Mo-Cu-Nb-Ti-B系低碳微合金钢915℃淬火和490~640℃回火的调质工艺对钢的组织及力学性能的影响.用扫描电镜和透射电镜对实验钢的组织、析出物形态和分布以及断口形貌进行观察,采用X射线衍射仪分析钢中残余奥氏体的体积分数.结果表明:调质后,实验钢获得贝氏体、少量马氏体及残余奥氏体复相组织,贝氏体板条宽度只有250 nm,残余奥氏体的体积分数随着回火温度的升高而降低,经淬火与520℃回火后残余奥氏体的体积分数为2.1%.调质后析出物的数量激增,6~15 nm的析出物占70%以上.实验钢经过915℃淬火与520℃回火后,其屈服强度达到915 MPa,抗拉强度990 MPa,-40℃冲击功为95 J.细小的析出物及窄的板条提高了钢的强度.板条间有残余奥氏体存在,改善了实验钢的韧性.   相似文献   

2.
回火温度对Mn-Ni钢亚稳奥氏体形貌及其力学性能的影响   总被引:1,自引:0,他引:1  
江陆  孙新军  李昭东  雍岐龙 《钢铁》2014,49(12):59-64
 利用了X射线衍射仪(XRD)、电子背散射衍射(EBSD)和透射电子显微镜(TEM)研究了回火温度对一种Mn-Ni钢亚稳奥氏体形貌及其力学性能的影响。结果表明,随着回火温度的升高,室温亚稳奥氏体的体积分数逐渐升高。当回火温度为600和625 ℃时,亚稳奥氏体主要以片层状在回火马氏体板条间析出,且排列方向与周围的马氏体板条平行,这种片层状亚稳奥氏体分布较为均匀,尺寸较小,约为60~100 nm,且稳定性较高;当回火温度为650 ℃时,试验钢中出现尺寸较大的块状奥氏体在回火马氏体界面的交叉处不均匀析出。分析表明,块状奥氏体有利于提高钢的塑性,不利于改善钢的低温韧性;而片层状奥氏体能大幅度的改善钢的低温韧性。  相似文献   

3.
Themicrostructureofsomehighstrengthlowalloysteelsandultrahighstrengthlowalloysteelsincommercialuseisusuallytemperedmartensite .However ,slack quenchedmixedmicrostructurecomprisingmartensiteandbainiteisgenerallyen counteredincommercialpracticewhentheselo…  相似文献   

4.
盛光敏  彭侃  高长益 《钢铁》1999,34(3):53-57,62
研究了热轧态,回火态及不同冷却速度下HG80钢的显微组织及力学性能,并讨论了HG80钢在非调质状态下的强韧化机制。结果表明,HG80钢非调质状态下的组织由铁素体基体和孪晶马氏体/残余奥氏体岛状相所组成;熟轧态主要是粒状组织,韧性偏低;随轧后冷却速度的提高,粒状贝氏体量增加,组织细化,钢的强性改善。  相似文献   

5.
赵佳莉  张福成  于宝东  刘辉 《钢铁》2017,52(1):71-80
 对一种新型70Si3MnCrMo钢进行了等温和连续冷却贝氏体相变热处理。利用拉伸和冲击试验研究试验钢的力学行为,利用XRD、SEM和TEM等方法对试验钢进行了相组成分析和微观组织形貌观察。研究结果表明,试验钢经等温贝氏体相变,其最佳综合力学性能出现在200 ℃回火,强塑积为26.4 GPa·%。经连续冷却贝氏体相变,其最佳综合力学性能出现在300 ℃回火,强塑积达到28.6 GPa·%。回火温度较低的情况下,热处理后的组织为由贝氏体铁素体和残余奥氏体组成的无碳化物贝氏体组织,这种无碳化物贝氏体由超细贝氏体铁素体板条而获得超高强度,由一定量的高碳残余奥氏体来保证较高的塑性和韧性。试验钢经连续冷却贝氏体相变,其贝氏体铁素体板条中出现了超细亚单元,并且残余奥氏体呈薄膜状和小块状两种形态分布于贝氏体铁素体板条之间,这两种形态残余奥氏体的稳定性不同。拉伸试样在变形过程中残余奥氏体持续发生TRIP效应,直至全部残余奥氏体都发生转变生成应变诱发马氏体,从而使钢得到更好的强、塑性配合,表现出十分优异的综合性能。  相似文献   

6.
通过单轴热压缩试验,结合扫描电镜以及X射线衍射技术,研究了动态相变前奥氏体晶粒状态对基于动态相变的热轧Nb-V-Ti微合金化TRIP钢复相组织状态及力学性能的影响.与动态相变前奥氏体晶粒为等轴状条件下相比,动态相变前奥氏体晶粒为拉长状条件下,动态相变得到的铁素体转变量较大,最终复相组织中贝氏体含量较少且团径较小,马氏体含量较少,但对残余奥氏体含量及其含碳量影响不明显.与不含微合金化元素的基于动态相变的热轧TRIP钢相比,Nb-V-Ti微合金化TRIP钢的屈服强度和抗拉强度明显提高,而延伸率有所降低.   相似文献   

7.
In the present study, a ferritic light-weight steel was tempered at 973 K (700 °C) for various tempering times, and tensile properties and deformation mechanisms were investigated and correlated to microstructure. ??-carbides precipitated in the tempered band-shaped martensite and ferrite matrix, and the tempered martensite became more decomposed with increasing tempering time. Tempering times for 3 days or longer led to the formation of austenite as irregular thick-film shapes mostly along boundaries between the tempered martensite and the ferrite matrix. Tensile tests of the 1-day-tempered specimen showed that deformation bands were homogeneously spread throughout the specimen, and that the fine carbides were sufficiently deformed inside these deformation bands resulting in high strength and ductility. The 3-day-tempered specimen showed a small amount of boundary austenite, which readily developed voids or cracks and became sites for fracture. This cracking at boundary austenites became more prominent in the 7- and 15-day-tempered specimens, as the volume fraction of boundary austenites increased with increasing tempering time. These findings suggested that, when the steel was tempered at 973 K (700 °C) for an appropriate time, i.e., 1 day, to sufficiently precipitate ??-carbides and to prevent the formation of boundary austenites, that the deformation occurred homogeneously, leading to overall higher mechanical properties.  相似文献   

8.
通过热处理试验、微观组织表征和力学性能检测,对比研究了在不同Cr含量的情况下,G18CrMo2-6钢微观组织形貌、力学性能的变化.结果表明,随着合金元素Cr含量增加,同一温度退火热处理后G18CrMo2-6钢中铁素体体积分数减少,贝氏体增多,从而导致材料强度升高;但是Cr含量的增加还会导致该类材料退火产生的贝氏体中马氏...  相似文献   

9.
Commercially available AISI 4340 steel has been studied to determine the effect of transformation structures on plane-strain fracture toughness (K IC). Martensitic and bainitic steels with wide variation in the prior austenitic grain size, and steels having two different mixed structures of martensite and bainite were investigated. Microstructures were examined by optical and transmission electron microscopy. Fracture morphologies were characterized by scanning electron microscopy. The significant conclusions are as follows: in a martensitic or lower bainitic steel in which well-defined packets were observed, the packet diameter is the primary microstructural factor controllingK IC. The steel's property is improved with increased packet diameter. If the steel has an upper bainitic structure, the packet is composed of well-defined blocks, and the block size controls theK IC property. When the steel has a mixed structure of martensite and bainite, the shape and distribution of the second phase bainite have a significant effect on theK IC property. A lower bainite, which appears in acicular form and partitions prior austenite grains of the parent martensite, dramatically improves theK IC in association with tempered martensite. If an upper bainite appearing as masses that fill prior austenite grains of the parent martensite is associated with tempered martensite, it significantly lowers the KIC.  相似文献   

10.
 The microstructures and mechanical properties of Cr13 super martensitic stainless steel after different heat treatments were studied. The results show that the structures of the steel after quenching are of lath martensite mixed with a small amount of retained austenite. With the raising quenching temperature, the original austenite grain size increases and the lath martensite gradually becomes thicker. The structures of the tempered steel are mixtures of tempered martensite and reversed austenite dispersed in the martensite matrix. The amount of reversed austenite is from 754% to 2249%. After different heat treatments, the tensile strength, the elongation and the HRC hardness of the steel are in the range of 813-1070 MPa, 101%-212% and 2133-3237, respectively. The steel displays the best comprehensive mechanical properties after the sample is quenched at 1050 ℃ followed by tempering at 650 ℃.  相似文献   

11.
贾国翔  王存宇  宋文英  时捷  马杰  董瀚 《钢铁》2015,50(5):69-74
 研究了一次淬火马氏体对低合金钢经淬火和配分(Quenching and Partitioning,Q&P)工艺后微观组织和单轴拉伸性能的影响,用扫描电镜进行微观组织表征,用X射线法测量残留奥氏体量。试验结果表明,随着一次淬火马氏体比例的增加,二次淬火马氏体的尺寸和数量逐渐减少,残留奥氏体体积分数呈先增加后减少的趋势,一次淬火马氏体体积分数为40%时获得最大残留奥氏体体积分数为16.92%。一次淬火马氏体体积分数为30%~70%时试验钢获得了较高的塑性和强塑积,马氏体基体为钢提供了高强度,残留奥氏体在变形过程中的TRIP效应提高了钢的塑性。  相似文献   

12.
为改善高强度钢的塑性和韧性,对中碳低合金马氏体高强度钢分别采用常化后空冷+回火和常化后控冷+回火工艺,研究常化后冷却工艺对钢中残余奥氏体及力学性能的影响.采用扫描电镜获得钢的组织形态,利用X射线衍射和电子背散射衍射技术分析钢中残余奥氏体的体积分数、形貌和分布.发现两种工艺下均得到板条马氏体+残余奥氏体组织,残余奥氏体均匀分布在板条之间,随工艺参数不同,其体积分数在3%~10%变化.常化后加速冷却能显著细化马氏体板条,提高钢的屈服强度和抗拉强度100 MPa以上,冲击功下降4 J.残余奥氏体的体积分数随常化控冷终冷温度的升高呈现先升高后降低的变化,常化后的控制冷却也可以作为进一步改善马氏体类型钢组织和性能的方法   相似文献   

13.
 The effect of different heat treatments on the reversed austenite in Cr15 super martensitic stainless steel was investigated. The experimental results indicate that the microstructure of the steel is composed of tempered martensite and diffused reversed austenite after quenching at 1050 ℃ and tempering from 550 to 750 ℃. The volume fraction and size of reversed austenite increase with increasing tempering temperature and both of them reach the maximum value at 700 ℃. The volume fraction and size of reversed austenite decrease when the temperature is above 700 ℃. The transmission electron microscope (TEM) results indicate that the orientation relationship between tempered martensite and reversed austenite belongs to Kurdjmov-Sach (K-S) relationship.  相似文献   

14.
The effect of transformation product on the temper embrittlement susceptibility of a Cr-Mo-V steel doped with P and Sn has been investigated at different strength levels. Results show that at low strength levels (< 10R C ) embrittlement susceptibilities of tempered bainite and ferrite-pearlite structures are comparable to each other, but lower relative to tempered martensite. The lower susceptibility of tempered bainite relative to tempered martensite obtains up to about 40R C , above which the susceptibilities for the two structures are similar. Variation of embrittlement susceptibility with microstructure is completely consistent with the degree of grain boundary segregation of P and Sn. The segregation is smaller in bainite than in martensite at a given strength level and increases with increasing strength level for a given structure. When compared at the same degree of embrittlement (i.e., same shift in FATT), the amount of grain boundary segregate and the extent of intergranular fracture are lower in tempered bainite compared to martensite indicating that embrittlement of interfaces other than prior austenite boundaries might be an important factor in the embrittlement of bainite structures.  相似文献   

15.
A study has been made of the effect of the second phase lower bainite on lower temperature mechanical properties from ambient temperature (287 K) to 123 K of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel corresponding to AISI 4340. When 25 vol pct lower bainite, which appeared in acicular form so as to partition prior austenite grains, was associated with martensite at 473 K, it provided a better combination of strength and ductility than that achieved using 1133 K direct water quenching irrespective of the test temperature. With the lower bainite, notch tensile strength was dramatically improved over the temperature region studied about 2150 MPa even at 123 K; whereas, in the case of 1133 K direct water quenching, it remained at about 1700 MPa. Similar trends were observed in the relationship between the lower bainite and the Charpy V-notch impact energy at and above 238 K. The lower bainite also produced superior fracture ductility and notch toughness results with decreased temperature of testing as compared to those obtained using a y γ α′ ’ repetitive heat treatment for the same steel. The above beneficial effects of the second phase lower bainite on lower temperature mechanical properties are briefly discussed in terms of metallographic examinations, the law of mixtures, and so on.  相似文献   

16.

In this work, X90 pipeline steel was welded by shielded metal arc welding with root and submerged arc welding with calk and cap. After that, the joint was tempered at 550 °C and 600 °C. Subsequently, the microstructure and mechanical properties were investigated by optical microscope, scanning electron microscope (SEM) and Vickers hardness tester. The fracture surface of welded joint was analyzed by SEM. The experiments show that: After high-temperature tempering treatment, the Widmanstatten structure disappears in coarse-grained region. The number of lath martensite in the original structure of the welded joint decreases, and the quantity of granular bainite increases. The acicular ferrite disappears gradually and the polygonal ferrite grains increase, and the M/A island components decompose into fine grains with the increase in tempering temperature. The mechanical properties of the joints also change and the hardness rises because of the disappearance of Widmanstatten structure improves after heat treatment, and yield strength and tensile strength of the specimens have the lowest values after tempering at 550 °C. After tempering at 600 °C, the hardness decreases and strength–ductility reaches 11,571 MPa%. The tensile fracture of 600 °C sample presents delamination and ductile fracture. Through comparative analysis, it can be concluded that the plasticity and toughness of multilayer welded joints after tempering at 600 °C is improved, and they have better comprehensive mechanical properties.

  相似文献   

17.
 研究了在不同热处理工艺条件下,一种800MPa级低碳贝氏体钢组织性能的变化规律。通过对控轧控冷(TMCP)、TMCP+水淬(WQ)、TMCP+WQ+回火(T)工艺的比较,发现试验钢在450℃时回火2h后,可以获得具有良好强韧性的组织,屈服强度为816MPa,伸长率大于16%。通过SEM和TEM观察可知,这种钢的室温组织主要是细小的板条状贝氏体、(准)多边形铁素体和少量过冷奥氏体? 湎嗟母聪嘧橹孀呕鼗鹞露鹊纳撸逄踔鸾ズ喜⒈淇恚钪辗⑸啾咝位换迥诖嬖诖罅康奈淮硪约跋感 ⒚稚⒎植嫉哪擅准兜诙嗔W樱涑叽缭嘉?0~20nm,选区衍射花样标定确定是Nb、Ti的碳氮化物,纳米级第二相粒子与位错的相互作用对材料增强增韧起重要作用,450℃回火时因析出强化造成的强度增量约为233MPa。  相似文献   

18.
利用OM、SEM、XRD、EBSD和室温拉伸试验机等研究了CSP热轧TRIP钢中间缓冷时间及贝氏体等温时间对组织和力学性能的影响。结果表明,随着中间缓冷时间的延长,试验钢中的铁素体和残余奥氏体体积分数增加,贝氏体体积分数减少;抗拉强度基本不变,屈服强度逐渐降低,断后伸长率和强塑积变化不明显。中间缓冷时间为6 s时,可满足CSP产线的要求。对贝氏体相变时间的研究表明,当等温时间为15 min时,试验钢中的残余奥氏体主要分布于铁素体/铁素体界面、铁素体/贝氏体界面以及贝氏体中,体积分数约为7.1%,表现出良好的TRIP效应。其抗拉强度、屈服强度、断后伸长率和强塑积分别达到744.0 MPa、522.5 MPa、29.3%和21.8 GPa·%,力学性能最优。当等温时间延长至50 min时,试验钢中的贝氏体含量增加,残余奥氏体体积分数减少至2.7%,强塑积明显下降。  相似文献   

19.
The limits of strength and ductility of a medium‐carbon silicon chromium spring steel are investigated for the case of conventional heat treatment including austenitization, quenching and tempering. The effect of phosphorus and austenite deformation prior to quenching was studied by measuring mechanical properties after quenching and tempering and by microstructural investigation. Strong influence of phosphorus on the ductility is observed for the quenched and tempered martensite without prior austenite deformation. The minimum in ductility found after tempering at 350°C is explained by the formation of cementite and grain boundary segregation of phosphorus. Two thermomechanical treatments were tested involving different austenite conditions produced by variation of the deformation temperature. The deformed conditions, recrystallized or work‐hardened, exhibit higher ductility at all tempering temperatures tested. A combined thermomechanical treatment is proposed that provides the highest ductility after tempering at 300°C independent of the phosphorus content. All thermomechanical treatments described in this study refine or eliminate carbide films at prior austenite grain boundaries. It was found possible to increase the tensile strength and the fatigue limit by deformation of austenite prior to quenching while maintaining or increasing the ductility level.  相似文献   

20.
Considering coarse initial austenite grain and the reduced thickness of directly charged thin slabs, a modified thermomechanical treatment was carried out on an unalloyed engineering steel with 0.66% C. For the laboratory simulation to determine the microstructural and mechanical properties a continuous casting simulator linked with the hot deformation simulator (Wumsi) were used. The aim of these tests was to study the process of the strain induced spheroidization of lamellar pearlite in order to improve the cold deformability of the steel, taking account of the particular conditions of direct charging. By the Variation of hot rolling deformation schedules, the influence of austenite grain size, pearlite interlamellar spacing as well as strain and strain temperature were investigated. The spheroidization process was mostly influenced by the strain applied just after finished pearlite transformation. Improving both strength and ductility by increasing fraction of spheroidized pearlite was supported by a smaller pearlite interlamellar spacing before deformation. A coarse austenite grain hardly affects the spheroidization process and brings about no impairment of mechanical properties, which makes this processing particularly attractive for direct charging of thin slabs. Moreover, a finely spheroidized pearlite exerts structural similarities to a tempered martensite, concerning distribution, shape and size of the cementite, accordingly leading to comparable mechanical properties. This justifies such modified hot rolling to be accepted as a potential substitution for the conventional post-rolling quench and tempering of high carbon steel products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号