首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, we propose a numerical method to obtain a solution for the time domain electric field integral equation (TD-EFIE) for arbitrary shaped conducting structures. This method does not utilize the customary marching-on in time (MOT) solution method often used to solve a hyperbolic partial differential equation. Instead we solve the wave equation by expressing the transient behaviors in terms of Laguerre polynomials. By using these causal orthonormal basis functions for the temporal variation, the time derivatives can be handled analytically. In order to solve the wave equation, we introduce two separate testing procedures, a spatial and temporal testing. By introducing first the Galerkin temporal testing procedure, the MOT procedure is replaced by a recursive relation between the different orders of the weighted Laguerre polynomials. The other novelty of this approach is that through the use of the entire domain Laguerre polynomials for the expansion of the temporal variation of the current, the spatial and the temporal variables can be separated and the temporal variables can be integrated out. For convenience, we use the Hertz vector as the unknown variable instead of the electric current density. To verify our method, we compare the results of a TD-EFIE and inverse Fourier transform of a frequency domain EFIE.  相似文献   

2.
In this work, we propose a numerical method to obtain an unconditionally stable solution for the finite-difference time-domain (FDTD) method for the TE/sub z/ case. This new method does not utilize the customary explicit leapfrog time scheme of the conventional FDTD method. Instead we solve the time-domain Maxwell's equations by expressing the transient behaviors in terms of weighted Laguerre polynomials. By using these orthonormal basis functions for the temporal variation, the time derivatives can be handled analytically, which results in an implicit relation. In this way, the time variable is eliminated from the computations. By introducing the Galerkin temporal testing procedure, the marching-on in time method is replaced by a recursive relation between the different orders of the weighted Laguerre polynomials if the input waveform is of arbitrary shape. Since the weighted Laguerre polynomials converge to zero as time progresses, the electric and magnetic fields when expanded in a series of weighted Laguerre polynomials also converge to zero. The other novelty of this approach is that, through the use of the entire domain-weighted Laguerre polynomials for the expansion of the temporal variation of the fields, the spatial and the temporal variables can be separated.  相似文献   

3.
《Signal processing》1986,11(3):277-304
An important application of the Wigner distribution (WD) is the synthesis of a discrete-time signal whose WD approximates a specified time-frequency distribution in the minimum mean-square error sense. One approach previously proposed (Yu and Cheng, Proc. ICASSP, 1985, pp. 1037–1040) is based upon the notion of expressing the desired signal in terms of orthonormal functions and applying the resulting induced Wigner distributions for WD synthesis. In this paper, we prove that the induced WDs cannot be orthonormal for any choice of the original orthonormal functions. We also prove that the induced WDs can be orthogonal only for particular original basis functions. We utilize these results to introduce a rigorous approach for discrete WD synthesis. We then illustrate our approach through analytical and computational examples.  相似文献   

4.
The augmented UD identification (AUDI) method is used to simultaneously estimate parameters of all 1 to Nth-order discrete orthonormal function models in one computational step. This method is tested on different types of orthonormal functions such as the Laguerre, Kautz, FIR, and Markov-Laguerre models  相似文献   

5.
In this paper, a numerical method to obtain an unconditionally stable solution of the time domain electric field integral equation for arbitrary conducting thin wires is presented. The time-domain electric field integral equation (TD-EFIE) technique has been employed to analyze electromagnetic scattering and radiation problems from thin wire structures. However, the most popular method to solve the TD-EFIE is typically the marching-on in time (MOT) method, which sometimes may suffer from its late-time instability. Instead, we solve the time-domain integral equation by expressing the transient behaviors in terms of weighted Laguerre polynomials. By using these orthonormal basis functions for the temporal variation, the time derivatives can be handled analytically and stable results can be obtained even for late-time. Furthermore, the excitation source in most scattering and radiation analysis of electromagnetic systems is typically done using a Gaussian shaped pulse. In this paper, both a Gaussian pulse and other waveshapes like a rectangular pulse or a ramp like function have been used as excitations for the scattering and radiation of thin-wire antennas with and without junctions. The time-domain results are compared with the inverse discrete Fourier transform (IDFT) of a frequency domain analysis.  相似文献   

6.
In this paper, we provide three direct procedures to extrapolate the early-time and the low-frequency response of a causal signal simultaneously in the time-and frequency domain. Compared with the extrapolation by orthonormal basis functions, direct extrapolation is straightforward and we do not need to evaluate the basis functions and search for the optimal scaling factor and the optimal number of basis functions. We show that the extrapolation introduced by Adve and Sarkar is equivalent to a Neumann-series solution of an integral equation of the second kind. It is further shown that this iterative Neumann expansion is an error-reducing method. We propose to solve this integral equation efficiently by employing a conjugate gradient iterative scheme. The convergence of this scheme is also demonstrated. We provide the matrix equations and show the equivalence to the integral equations, and demonstrate that the method of singular value decomposition (SVD) of solving the matrix equation provides accurate and stable results. Finally, a number of illustrative numerical examples are presented and the performances of the three direct methods are compared.  相似文献   

7.
The discrete Laguerre transform: derivation and applications   总被引:1,自引:0,他引:1  
The discrete Laguerre transform (DLT) belongs to the family of unitary transforms known as Gauss-Jacobi transforms. Using classical methodology, the DLT is derived from the orthonormal set of Laguerre functions. By examining the basis vectors of the transform matrix, the types of signals that can be best represented by the DLT are determined. Simulation results are used to compare the DLT's effectiveness in representing such signals to that of other available transforms in applications such as data compression and transform-domain adaptive filters  相似文献   

8.
In this paper, we propose a time-domain electric field integral equation (TD-EFIE) formulation for analyzing the transient electromagnetic response from three-dimensional (3-D) dielectric bodies. The solution method in this paper is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent electric and magnetic currents are approximated using a set of orthonormal basis function that is derived from the Laguerre functions. These basis functions are also used as the temporal testing functions. Use of the Laguerre polynomials as expansion functions for the transient portion of response enables one not only to handle the time derivative terms in the integral equation in an analytic fashion but also completely separates the space and the time variables. Thus, the time variable along with the Courant condition can be eliminated in a Galerkin formulation using this procedure. We also propose an alternative formulation using a different expansion of the magnetic current. The total computational cost for this new method is similar to that of an implicit marching-on in time (MOT)-EFIE scheme, even though at each step this procedure requires more computations. Numerical results involving equivalent currents and far fields computed by the two proposed methods are presented and compared.  相似文献   

9.
This paper considers the problem to reconstruct and approximate multidimensional signals from nonuniformly distributed samples. Using multivariable spectral decompositions of functions in terms of empirical orthonormal basis functions we establish the exact recovery of a signal from its samples provided that the signal is band-limited in a well defined generic sense. The relation to sampling and approximate reconstruction of tensors is indicated. For non-band-limited signals expressions for the alias error are derived. An operator is introduced that reflects the alias sensitivity. The maximum alias sensitivity is characterized as the maximum eigenvalue of a suitably defined tensor operator. Results are illustrated by an example of signal reconstructions from partial measurements of a heat diffusion process.  相似文献   

10.
In this paper, we present a time domain combined field integral equation formulation (TD‐CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space‐time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.  相似文献   

11.
Interpolating multiwavelet bases and the sampling theorem   总被引:8,自引:0,他引:8  
This paper considers the classical sampling theorem in multiresolution spaces with scaling functions as interpolants. As discussed by Xia and Zhang (1993), for an orthogonal scaling function to support such a sampling theorem, the scaling function must be cardinal (interpolating). They also showed that the only orthogonal scaling function that is both cardinal and of compact support is the Haar function, which is not continuous. This paper addresses the same question, but in the multiwavelet context, where the situation is different. This paper presents the construction of compactly supported orthogonal multiscaling functions that are continuously differentiable and cardinal. The scaling functions thereby support a Shannon-like sampling theorem. Such wavelet bases are appealing because the initialization of the discrete wavelet transform (prefiltering) is the identity operator  相似文献   

12.
In this paper, we use polyharmonic B-splines to build multidimensional wavelet bases. These functions are nonseparable, multidimensional basis functions that are localized versions of radial basis functions. We show that Rabut's elementary polyharmonic B-splines do not converge to a Gaussian as the order parameter increases, as opposed to their separable B-spline counterparts. Therefore, we introduce a more isotropic localization operator that guarantees this convergence, resulting into the isotropic polyharmonic B-splines. Next, we focus on the two-dimensional quincunx subsampling scheme. This configuration is of particular interest for image processing because it yields a finer scale progression than the standard dyadic approach. However, up until now, the design of appropriate filters for the quincunx scheme has mainly been done using the McClellan transform. In our approach, we start from the scaling functions, which are the polyharmonic B-splines and, as such, explicitly known, and we derive a family of polyharmonic spline wavelets corresponding to different flavors of the semi-orthogonal wavelet transform; e.g., orthonormal, B-spline, and dual. The filters are automatically specified by the scaling relations satisfied by these functions. We prove that the isotropic polyharmonic B-spline wavelet converges to a combination of four Gabor atoms, which are well separated in the frequency domain. We also show that these wavelets are nearly isotropic and that they behave as an iterated Laplacian operator at low frequencies. We describe an efficient fast Fourier transform-based implementation of the discrete wavelet transform based on polyharmonic B-splines.  相似文献   

13.
The finite ridgelet transform for image representation   总被引:65,自引:0,他引:65  
The ridgelet transform was introduced as a sparse expansion for functions on continuous spaces that are smooth away from discontinuities along lines. We propose an orthonormal version of the ridgelet transform for discrete and finite-size images. Our construction uses the finite Radon transform (FRAT) as a building block. To overcome the periodization effect of a finite transform, we introduce a novel ordering of the FRAT coefficients. We also analyze the FRAT as a frame operator and derive the exact frame bounds. The resulting finite ridgelet transform (FRIT) is invertible, nonredundant and computed via fast algorithms. Furthermore, this construction leads to a family of directional and orthonormal bases for images. Numerical results show that the FRIT is more effective than the wavelet transform in approximating and denoising images with straight edges.  相似文献   

14.
Generalized Daubechies Wavelet Families   总被引:3,自引:0,他引:3  
We present a generalization of the orthonormal Daubechies wavelets and of their related biorthogonal flavors (Cohen-Daubechies-Feauveau, 9/7). Our fundamental constraint is that the scaling functions should reproduce a predefined set of exponential polynomials. This allows one to tune the corresponding wavelet transform to a specific class of signals, thereby ensuring good approximation and sparsity properties. The main difference with the classical construction of Daubechies is that the multiresolution spaces are derived from scale-dependent generating functions. However, from an algorithmic standpoint, Mallat's fast wavelet transform algorithm can still be applied; the only adaptation consists in using scale-dependent filter banks. Finite support ensures the same computational efficiency as in the classical case. We characterize the scaling and wavelet filters, construct them and show several examples of the associated functions. We prove that these functions are square-integrable and that they converge to their classical counterparts of the corresponding order.  相似文献   

15.
The techniques of scattering and inverse scattering theory are used to investigate the properties of matrix orthogonal polynomials. The discrete matrix analog of the Jost function is introduced and its properties investigated. The matrix distribution function with respect to which the polynomials are orthonormal is constructed. The discrete matrix analog of the Marchenko equation is derived and used to obtain further results on the matrix Jost function and the distribution function.This work was supported in part by NSF Grant MCS-8002731.  相似文献   

16.
The notion of representing discrete-time electromagnetic pulse (EMP) signals using orthonormal Laguerre sequences is introduced. The motivation for doing so is that EMP signals and Laguerre sequences are both characterized by decaying exponentials. It is shown a that very efficient Laguerre representation of EMP signals is possible using this approach  相似文献   

17.
Optimum Laguerre networks for a class of discrete-time systems   总被引:1,自引:0,他引:1  
An analytical approach is introduced that directly yields the optimum value of the Laguerre parameter b. This is achieved by minimizing the mean-square error between the unit-sample response of the given discrete system and that of its Laguerre counterpart. It is shown that Laguerre networks are best suited to realized systems whose exponential unit-sample responses die down rapidly  相似文献   

18.
The objective of this paper is to generate a wideband and temporal response of three-dimensional composite structures by using a hybrid method that involves generation of early time and low-frequency information. The data in these two separate time and frequency domains are mutually complementary and contain all the necessary information for a sufficient record length. Utilizing a set of orthogonal polynomials, the time domain signal (be it the electric or the magnetic currents or the near/far scattered electromagnetic field) could be expressed in an efficient way as well as the corresponding frequency domain responses. The available data is simultaneously extrapolated in both domains. Computational load for electromagnetic analysis in either domain, time or frequency, can be thus significantly reduced. Three orthogonal polynomial representations including Hermite polynomial, Laguerre function and Bessel function are used in this approach. However, the performance of this new method is sensitive to two important parameters-the scaling factor l/sub 1/ and the expansion order N. It is therefore important to find the optimal parameters to achieve the best performance. A comparison is presented to illustrate that for the classes of problems dealt with, the choice of the Laguerre polynomials has the best performance as illustrated by a typical scattering example from a dielectric hemisphere.  相似文献   

19.
We consider orthonormal expansions where the basis functions are governed by some free parameters. If the basis functions adhere to a certain differential or difference equation, then an expression can be given for a specific enforced convergence rate criterion as well as an upper bound for the quadratic truncation error. This expression is a function of the free parameters and some simple signal measurements. Restrictions on the differential or difference equation that make this possible are given. Minimization of either the upper bound or the enforced convergence criterion as a function of the free parameters yields the same optimal parameters, which are of a simple form. This method is applied to several continuous-time and discrete-time orthonormal expansions that are all related to classical orthogonal polynomials  相似文献   

20.
Nonlinear time-domain modeling by multiresolution time domain(MRTD)   总被引:3,自引:0,他引:3  
A multiresolution time-domain (MRTD) scheme based on the expansion in scaling functions is applied to the modeling of nonlinear pulse propagation. Appropriate absorbers for the MRTD scheme are presented and their performance is discussed. The differences using pulse functions and nonlocalized basis functions like the Battle-Lemarie scaling functions are demonstrated by deriving time-domain schemes for both sets of orthonormal basis functions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号