首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-steady-state ensemble arc behavior has been observed during the Vacuum Arc Remelting (VAR) of 508-mm-diameter ingots of INCONEL 718. The liquid metal flow in the melt pool of a 508-mm ingot during VAR has been simulated under two alternative sets of conditions: (1) a steady-state axisymmetrical arc distribution, as has been typically used in modeling work previously; and (b) a transient asymmetrical arc distribution. Due to the computational requirements, neither mass flux nor solidification were modeled; instead, the pool shape was fixed from measurements from a 508-mm-diameter ingot, and a constant pool wall temperature of 1609 K was used. The transient simulation assumed a localized Gaussian arc whose effective center was located at a distance of 0.1 m from the ingot centerline; this simulation rotated clockwise around the centerline with a period of 36 seconds. The steady-state model was simulated with axisymmetrical distributions of current and power input to the pool top surface calculated by time averaging the transient current and power inputs. The standard k-ε solver of ANSYS CFX 5.6 software was used for both simulations. The transient model results suggest that 5 seconds of asymmetrical arc behavior is enough to change the pool from steady state to transient and that, after 30 seconds, the flow is almost fully developed (at least to the accuracy of the model) and dominated by the Lorentz force. Aspects of the model results agree with key features of the melt pool observed during VAR. This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.
R.M. Ward (Research Associate)Email:
  相似文献   

2.
3.
A numerical model of the vacuum arc remelting (VAR) process was used to study multistage VAR processes. The studies of low and high power 3XVAR confirmed the results of the single stage process studies for Ti-10-2-3: (1) high arc power results in strong electromagnetically driven flow and undesirably high macrosegregation; (2) low arc power does not generate significant Lorentz forces and the flow is dominated by weaker buoyancy forces, which cause less segregation; and (3) even short-lived changes in process conditions during the run may result in a switch of the flow regime in low power cases from buoyancy driven to electromagnetically driven. The switch of flow regime results in an increase in macrosegregation levels and a change in the pattern of solute redistribution. The most significant finding in the studies of 3XVAR processing of Ti-10-2-3 is the small effect of the electrode composition distribution on ingot segregation development. In both low and high power VAR cases, macrosegregation levels and patterns in the final ingots were similar to those demonstrated assuming a uniform electrode for that final case. However, for low power cases, nonuniformities in the electrode composition may strongly affect the final ingot macrosegregation. The nonuniformity in the composition of the electrode results in the formation of additional buoyancy forces within the liquid pool, which can cause a switch from buoyancy driven flow to the undesirable electromagnetically driven flow regime and a drastic change in segregation development. This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.  相似文献   

4.
Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.  相似文献   

5.
针对VAR炉的结构特点,探讨了真空自耗熔炼过程中磁场产生的原因及其在熔化区域分布的规律;分析了VAR熔炼过程中存在的3种主要磁场,即熔化电流自生的水平磁场、外加的纵向磁场和VAR炉自身及周围铁质结构件产生的杂散磁场,对熔炼过程及铸锭质量的影响。  相似文献   

6.
采用以ANSYS软件建立的有限元模型对Ti6Al4V合金(O)600 mm铸锭真空自耗电弧熔炼过程中的温度场变化以及熔炼电流对熔池形貌的影响进行了研究,并耦合微观模拟的CAFD模型对铸锭几个特征区域凝固前沿的枝晶生长和V元素溶质偏析进行了模拟.结果表明,熔炼电流的增大使熔池深度和糊状区宽度变大,使熔炼达到稳态的时间提前;熔炼达到稳态时,铸锭中心处形成较短而不是十分连续柱状晶组织,二分之一半径处和边部则形成连续的柱状晶组织.  相似文献   

7.
A Multiscale 3D Model of the Vacuum Arc Remelting Process   总被引:1,自引:0,他引:1  
A three-dimensional, transient, multiscale model of the VAR process is presented, allowing novel simulations of the influence of fluctuations in arc behavior on the flow and heat transfer in the molten pool and the effect this has on the microstructure and defects. The transient behavior of the arc was characterized using the external magnetic field and surface current measurements, which were then used as transient boundary conditions in the model. The interactions of the magnetic field, turbulent metal flow, and heat transfer were modeled using CFD techniques and this “macro” model was linked to a microscale solidification model. This allowed the transient fluctuations in the dendritic microstructure to be predicted, allowing the first coupled three-dimensional correlations between macroscopic operational parameters and microstructural defects to be performed. It was found that convection driven by the motion of the arc caused local remelting of the mushy zone, resulting in variations in permeability and solute density. This causes variations in the local Rayleigh number, leading to conditions under which freckle solidification defects will initiate. A three-dimensional transient tracking of particle fall-in was also simulated, enabling predictions of “white spot” defects via quantification of the trajectory and dissolution of inclusions entering the melt.  相似文献   

8.
The deformation microstructures produced by room-temperature monotonie tensile and uniaxial low-cycle fatigue tests in aged (precipitate-hardened) INCONEL 718 were examined by transmission electron microscopy (TEM). Regularly spaced arrays of deformation bands on {111} slip planes were observed. Under monotonie loading, the dislocation structure within a deformation band formed an inverse pileup at a grain boundary, indicating that the boundary was the probable dislocation source. Under fatigue loading, the bands contained a high density of dislocations in a complex arrangement, which was attained after relatively few cycles. Samples of homogenized (precipitate-free) material were deformed monotonically in tension for comparison with the aged material. Early in the deformation, there was only one deformation band per grain and little evidence of work hardening; that is, there was a region of constant flow stress. With increased deformation, work hardening began, more bands nucleated, and their spacing became similar to that in the aged material. This result demonstrates that the degree of coarseness of inhomogeneous deformation in this material was not necessarily a result of a softening process within the bands because of precipitate shearing, but rather, it was primarily a function of the amount of work hardening within the bands. The regularity of the bands and the dislocation structure can be rationalized in terms of a periodic resistance to glide of the dislocations due to the presence of the precipitates and a distribution of dislocation sources along the grain boundaries. D.W. WORTHEM, formerly Graduate Student, Department of Theoretical and Applied Mechanics and Materials Research Laboratory, University of Illinois F.A. LECKIE, formerly Professor, Department of Theoretical and Applied Mechanics and Materials Research Laboratory, University of Illinois  相似文献   

9.
Preferential coarsening of theγ″ (Ni3Nb) precipitates was observed in polycrystalline INCONEL 718 during creep which involved principally the growth of one of three variants at the expense of the others. The tendency and extent of preferential coarsening are analyzed in terms of the interaction between the applied stress and the transformation strains and probabilistically in terms of the orientation of theγ″ precipitates with respect to the tensile stress axis.  相似文献   

10.
A three-dimensional finite-element model has been developed to understand the electromagnetic field and liquid metal pool shape in an electroslag remelting (ESR) process with two series-connected electrodes. The magnetic vector potential is introduced into the Maxwell’s equations, and the nodal-based method is used to solve a three-dimensional harmonic electromagnetic field. The heat transfer of the solidifying processes of ingot is modeled by a source-based enthalpy method, and the Joule heating is included in an inner source. The results show the main part of the current flows through the slag cap and a little enters into ingot in a two-series-connected electrode ESR system. As the interaction of self-induced and mutual-induced of two electrodes occurs, the skin effect is significantly suppressed by the neighbor effect. A symmetrical pattern of magnetic flux density in a two-series-connected electrode ESR system is displayed. The magnetic flux density between two electrodes is reinforced and reduced at the outside of two electrodes. The maximum Joule heat power density is located at the interface of slag and electrodes, and it decreases with an increase of the electrode immersion depth. The averaged Joule heat power density increases when slag cap thickness is reduced. With the increase of ingot height, the liquid metal pool shape changes from arc shaped to “V” shaped. When the ingot height is more than the diameter in the ESR processes, the liquid metal pool shape is constant.  相似文献   

11.
The elimination of high interstitial defects (also known as hard-α inclusions) is of great importance to the titanium industry. This article presents a model capable of simulating the motion and dissolution of such defects during their residence in the pool of a vacuum arc remelted (VAR) ingot. To predict the complete history of that inclusion, the study couples a dissolution model of the defect and a Lagrangian particle-tracking model. This numerical tool is implemented in SOLAR (solidification during arc remelting), a computational fluid dynamics code developed at the Nancy School of Mines in the framework of an important research project conducted during the last 15 years, which aims to study and optimize the VAR process. The dissolution model numerically solves the nitrogen diffusion equation in a spherical inclusion and in thermal equilibrium with the surrounding fluid. The computational domain is divided into a central zone (α phase) and a surrounding layer (β phase), which appears because the diffusion of nitrogen into the liquid pool causes some solidification. The dissolution kinetics strongly depend on the liquid temperature and velocity of the inclusion. The model can compute the nitrogen profile in the defect at each moment as well as the thickness of the different layers; therefore, it can compute the overall size of the inclusion. The trajectory model consists of solving Newton’s law of motion. Because the inclusion size is large, the consequence of fluid-flow turbulence is to modify the local flow around the inclusion so that the drag is affected. Results presented and discussed in this article include a parametric study of the influence of the pool thermohydrodynamics, the relative inclusion–fluid density, and the initial diameter of the defect as it enters the melt pool. Finally, an example of the full history of an inclusion during triple VAR illustrates the possibility to remove such a defect effectively by dissolving it in the liquid phase.  相似文献   

12.
A criterion for freckling prediction that includes the effect of a tilted solidification front was proposed and evaluated with experimental data available in the literature. The criterion is based on the maximum local Rayleigh number in the mush layer and was developed using Flemings’ criterion and assuming that the interdendritic liquid flow is governed by the Darcy law. The proposed form preserves the anisotropic nature of the permeability tensor throughout the derivation and provides improved resolution on freckle prediction. A clear separation between the freckled and nonfreckled experiments was obtained for all compositions. The effect of the tilted solidification front over the freckling potential was corroborated, and the results suggested that the directionality of permeability affects the location within the mush layer of the potential nucleation sites for the channels leading to freckles. A threshold zone was determined from the enclosing experiments data, and the range contained one of the proposed critical values for superalloys, which previously was developed by a completely different method.  相似文献   

13.
The segregation behavior of boron at grain boundaries in two INCONEL 718+ based alloys with different B concentrations was studied. The alloys, one containing 11 ppm of B and the other 43 ppm, were homogenized at 1200 °C for 2 hours followed by water quenching and air cooling. A strong segregation of boron at grain boundaries was observed using secondary ion mass spectrometry after the heat treatment in both the alloys. The segregation was found mainly to be of nonequilibrium type. The homogenized samples were also annealed at 1050 °C for various lengths of time. During annealing, boride particles were observed to first form at grain boundaries and then to dissolve on continued annealing at 1050 °C. The mechanisms of segregation and desegregation of B are discussed.  相似文献   

14.
15.
Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.  相似文献   

16.
White spot is the term for a particulate dispersion lean in niobium found in vacuum arc remelted (VAR) ingots of niobium containing nickel-based superalloys, such as INCONEL718, that can be detrimental to the mechanical properties. While spot can result from exogenous fragments that fall into the VAR melt pool and remain incompletely melted. In this study, white spot formed when dendrite clusters fall-in from the shrinkage pipe of vacuum induction melted (VIM) electrodes is considered by simulations. The motion and dissolution of the dendrite cluster particles were simulated in the framework of a macroscopic heat and fluid flow model of the VAR process. Two scales of heat and mass transfer are considered within the cluster: interdendritic solute diffusion within particles and the thermal interaction between the particle and the bulk convective melt. The dissolution behavior of dendrite cluster fall-in was investigated for a range of initial particle conditions including solid fraction, Nb content, drop height, and initial temperature. The operational window where the exogenous particles completely dissolve was determined as a function of cluster size, density, and location. It was found that particles smaller than 3 mm are completely dissolved under all conditions simulated in this study. All factors studied demonstrated significant influence on particle dissolution. Particles with a solid fraction less than 0.5, a Nb content greater than 4 pct, or an initial temperature greater than 1400 K are likely to be dissolved immediately after entering the melt pool. Drop height and initial density had the greatest effect on particle dissolution.  相似文献   

17.
调整功率对电渣重熔(ESR)熔池深度的影响   总被引:3,自引:1,他引:3  
通过Φ10 0× 35 0 (mm)结晶器 16 0kW电渣炉 ,70 %CaF2 +30 %Al2 O3(ANF 6 )重熔渣 ,Φ36mm 4 5钢自耗电极自动送进电渣重熔工艺参数对熔池深度h( 0 ,Y) 影响的实验研究 ,得出熔池深度h( 0 ,Y) =A·e-B Y ,式中A、B为工艺参数的函数 ,Y为重熔锭高度。结果表明 ,调整功率工艺 (电流调整级差ΔI 0 .1~ 0 .2kA)重熔时溶池深度h( 0 ,Y) 明显低于等电流重熔工艺的h( 0 ,Y) 值 ,在采用调整功率的重熔过程中熔池深度变化Δh较小 ,有利于得到均匀的铸态组织  相似文献   

18.
The superalloy INCONEL 718 (IN718) is a commonly used material in aerospace and turbine components. The advantage of this type of material with sluggish precipitation-hardening kinetics is that IN718 is readily weldable. Both wrought and cast parts are used and welded together. While the alloy has been studied previously, new production processes such as laser treatment demand better knowledge of the solidification process in IN718, especially at high cooling rates. In this investigation, the solidification process was studied over a wide range of cooling rates by three different experimental techniques: differential thermal analysis (DTA), mirror furnace (MF), and levitation casting. The solidification sequence and the reaction temperatures were identified. The microstructure and the change in growth morphology were also studied. Segregation measurements were performed, and the distribution of Nb was analyzed in detail for the different types of samples, because of its strong impact on the solidification sequence and microstructure. New observations are that the latent heat decreases and the effective partition coefficient increases with increasing cooling rate. The diffusion rate also seems to be enhanced in the first part of primary solidified dendrites. It is suggested that the new observations can be explained by an increased number of lattice defects formed in the solid as the cooling rate increases.  相似文献   

19.
In the production of turbine discs, the final wrought structure is critically dependent on aspects of the ingot grain structure produced by vacuum arc remelting (VAR) prior to cogging and forging. Variations in the as-cast grain structure in the nickel-based superalloy INCONEL 718 were investigated, focusing upon regions where strings of equiaxed grains interrupt a predominately columnar-dendritic structure. These features, termed “tree rings,” form concentric circles that can be observed visually on etched transverse sections of the VAR ingot. These structures are of interest because they correlate with perturbations in control of the process and have also been associated with the occurrence of defects. This article describes an experimental study of these tree rings, which both characterizes them and investigates possible mechanisms for their formation. Fluctuations in the macroscopic heat, mass, and momentum transfer, which can increase the grain nucleation at the mushy zone front (similar to a columnar-to-equiaxed transition), were considered to be the most likely of the mechanisms hypothesized. In a second article, a multiscale mathematical model is developed to quantify these concepts and to determine whether they account for the features observed.  相似文献   

20.
Tree-ring grain formations, a common microstructural feature found in vacuum arc remelted (VAR) ingots of nickel-based superalloys, were characterized experimentally in Part I. The experimental observations led to the conclusion that tree rings are chains of fine-equiaxed grains interrupting a predominately columnar-dendritic structure. Several possible mechanisms for their formation were considered, and their implications correlated with experimental observations. The most likely mechanism was determined to be that process perturbations cause changes in the thermal (or solutal) fields ahead of the columnar-dendrite tips, temporarily altering the conditions to increase grain nucleation and, hence, forming fine-equiaxed grains. In this article, Part II, a multiscale mathematical model of the VAR process is presented that simulates the macroscopic heat and momentum transport and combines it with a mesoscopic model of the nucleation and growth of grains. Using this multiscale model, the transient development of the VAR grain structure was simulated with varying levels and durations of fluctuations in the principal process parameters: power supply, arc focus, melt rate, and the ingot-crucible heat-transfer coefficient. The simulations were shown to agree with optical and electron back-scattered diffraction (EBSD) measurements of grain morphology and crystallographic orientation. The model results predict that tree-ring structures (consistent with those observed experimentally) can be formed by process perturbations that alter the thermal field conditions at the solidification front. A sensitivity study of the effect of the different process fluctuations on the microstructure formation was performed, providing process maps predicting the range of conditions where tree rings will not form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号