首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study on the phenomenon of tempered martensite embrittlement (TME) has been made in experimental Fe-Mo-C and Fe-W-C steel. Charpy impact testing was conducted to evaluate the impact toughness, sensitive to TME. Retained austenite was observed by an analytical transmission electron microscopy in both steels. Both steels represented TME. TME was correlated with the formation of the interlath cementite, resulting from the decomposition of interlath retained austenite. TME occurred in a limited range of test temperatures where the interlath cementite could act as a source of embrittling cracks. Therefore, both the interlath cementite resulting from the decomposition of the interlath retained austenite, and the level of matrix toughness, enabling the interlath cementite to act as an effective embrittler, are necessary to produce TME.  相似文献   

2.
Mechanisms of tempered martensite embrittlement in low alloy steels   总被引:1,自引:0,他引:1  
An investigation into the mechanisms of tempered martensite embrittlement (TME), also know as “500°F” or “350°C” or one-step temper embrittlement, has been made in commercial, ultra-high strength 4340 and Si-modified 4340 (300-M) alloy steels, with particular focus given to the role of interlath films of retained austenite. Studies were performed on the variation of i) strength and toughness, and ii) the morphology, volume fraction and thermal and mechanical stability of retained austenite, as a function of tempering temperature, following oil-quenching, isothermal holding, and continuous air cooling from the austenitizing temperature. TME was observed as a decrease in bothK Ic and Charpy V-notch impact energy after tempering around 300°C in 4340 and 425°C in 300-M, where the mechanisms of fracture were either interlath cleavage or largely transgranular cleavage. The embrittlement was found to be concurrent with the interlath precipitation of cementite during temperingand the consequent mechanical instability of interlath films of retained austenite during subsequent loading. The role of silicon in 300-M was seen to retard these processes and hence retard TME to higher tempering temperatures than for 4340. The magnitude of the embrittlement was found to be significantly greater in microstructures containing increasing volume fractions of retained austenite. Specifically, in 300-M the decrease inK Ic, due to TME, was a 5 MPa√m in oil quenched structures with less than 4 pct austenite, compared to a massive decrease of 70 MPa√m in slowly (air) cooled structures containing 25 pct austenite. A complete mechanism of tempered martensite embrittlement is proposed involving i) precipitation of interlath cementite due to partial thermal decomposition of interlath films of retained austenite, and ii) subsequent deformation-induced transformation on loading of remaining interlath austenite, destabilized by carbon depletion from carbide precipitation. The deterioration in toughness, associated with TME, is therefore ascribed to the embrittling effect of i) interlath cementite precipitates and ii) an interlath layer of mechanically-transformed austenite,i.e., untempered martensite. The presence of residual impurity elements in prior austenite grain boundaries, having segregated there during austenitization, may accentuate this process by providing an alternative weak path for fracture. The relative importance of these effects is discussed. Formerly with the Lawrence Berkeley Laboratory, University of California.  相似文献   

3.
This study is concerned with a correlation between the microstructure and fracture behavior of two AISI 4340 steels which were vacuum induction melted and then deoxidized with aluminum and titanium additions. This allowed a comparison between microstructures that underwent large increases in grain size and those that did not. When the steels were tempered at 350°C,K Ic and Charpy impact energy plots showed troughs which indicated tempered martensite embrittlement (TME). The TME results of plane strain fracture toughness are interpreted using a simple ductile fracture initiation model based on large strain deformation fields ahead of cracks, suggesting thatK Icscales roughly with the square root of the spacing of cementite particles precipitated during the tempering treatment. The trough in Charpy impact energy is found to coincide well with the amount of intergranular fracture and the effect of segregation of phosphorus on the austenite grain boundaries. In addition, cementite particles are of primary importance in initiating the intergranular cracks and, consequently, reducing the Charpy energy. These findings suggest that TME in the two 4340 steels studied can be explained quantitatively using different fracture models.  相似文献   

4.
This paper presents a study of carbide precipitation, grain boundary segregation, and temper embrittlement in NiCrMoV rotor steels. One of the steels was high purity, one was doped with phosphorus, one was doped with tin, and one was commercial purity. In addition, two NiCrV steels, one high purity and one doped with phosphorus, were examined. Carbide precipitation was studied with analytical electron microscopy. It was found that after one hour of tempering at 600 ‡C only M3C carbides were precipitated in the NiCrMoV steels. These were very rich in iron. As the tempering time increased, the chromium content of the M3C carbides increased significantly, but their size did not change. Chromium rich M7C3 precipitates began to form after 20 hours of tempering, and after 50 hours of tempering Mo-rich M2C carbides were precipitated. Also, after 100 hours of tempering, the matrix formed bands rich in M3C or M7C3 and M2C particles. Tempering occurred more rapidly in the NiCrV steels. Grain boundary segregation was studied with Auger electron spectroscopy. It was found that the amount of phosphorus and tin segregation that occurred during a step-cooling heat treatment after tempering was less if a short time tempering treatment had been used. It will be proposed that this result occurs because the low temperature tempering treatments leave more carbon in the matrix. Carbon then compctes with phosphorus and tin for sites at grain boundaries. This compctition appears to affect phosphorus segregation more than tin segregation. In addition to these two impurity elements, molybdenum and nickel segregated during low temperature aging. The presence of molybdenum in the steel did not appear to affect phosphorus segregation. Finally, it will be shown that all of the steels that contain phosphorus and/or tin exhibit some degree of temper embrittlement when they are aged at 520 ‡C or are given a step-cooling heat treatment. Of the NiCrMoV steels, the phosphorus-doped steel showed the least embrittlement and the commercial purity steel the most. The phosphorus-doped NiCrV steel was also more susceptible to temper embrittlement than the phosphorus-doped NiCrMoV steel. This latter difference was attributed to molybdenum improving grain boundary cohesion. It was also found that as the segregation of phosphorus or tin to the grain boundaries increased, the measured embrittlement and the amount of intergranular fracture increased. However, there was a large amount of scatter in all of these data and the trends were only qualitative. All parts of this study are compared in detail to others in the literature, and general trends that can be discerned from all of these results are presented. Formerly with the University of Pennsylvania, Department of Materials Science, Philadelphia, PA  相似文献   

5.
A study of the structure and mechanical properties of Fe-Cr-Mo-C martensitic steels with and without boron addition has been carried out. Nonconventional heat treatments have subsequently been designed to improve the mechanical properties of these steels. Boron has been known to be a very potent element in increasing the hardenability of steel, but its effect on structure and mechanical properties of quenched and tempered martensitic steels has not been clear. The present results show that the as-quenched structures of both steels consist mainly of dislocated martensite. In the boron-free steel, there are more lath boundary retained austenite films. The boron-treated steel shows higher strengths at all tempering temperatures but with lower Charpy V-notch impact energies. Both steels show tempered martensite embrittlement when tempered at 350 °C for 1 h. The properties above 500 °C tempering are significantly different in the two steels. While the boron-free steel shows a continuous increase in toughness when tempered above 500 °C, the boron-treated steel suffers a second drop in toughness at 600 °C tempering. Transmission electron microscopy studies show that in the 600 °C tempered boron-treated steel large, more or less continuous cementite films are present at the lath boundaries, which are probably responsible for the embrittlement. The differences in mechanical properties at tempering temperatures above 500 °C are rationalized in terms of the effect of boron-vacancy interactions on the recovery and recrystallization behavior of these steels. Although boron seems to impair room temperature impact toughness at low strength levels, it does not affect this property at high strength levels. By simple nonconventinal heat treatments of the present alloys, martensitic steels may be produced with quite good strength-toughness properties which are much superior to those of existing commercial ultra-high strength steels. It is also shown that very good combinations of strength and toughness can be obtained with as-quenched martensitic steels.  相似文献   

6.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Some in situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C films upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The situation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which occurs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can occur in the same steels, depending on the tempering conditions.  相似文献   

7.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Somein situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C filMs upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The sit11Ation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which o°Curs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can o°Cur in the same steels, depending on the tempering conditions.  相似文献   

8.
The toughness of SAE 4340 steel with low (0.003 wt pct) and high (0.03 wt pct) phosphorus has been evaluated by Charpy V notch (CVN) impact and compact tension plane strain fracture toughness (K 1c) tests of specimens quenched and tempered up to 673 K (400°C). Both the high and low P steel showed the characteristic tempered martensite embrittlement (TME) plateau or trough in room temperature CVN impact toughness after tempering at temperatures between 473 K (200°C) and 673 K (400°C). The CVN energy absorbed by low P specimens after tempering at any temperature was always about 10 J higher than that of the high P specimens given the same heat treatment. Interlath carbide initiated cleavage across the martensite laths was identified as the mechanism of TME in the low P 4340 steel, while intergranular fracture, apparently due to a combination of P segregation and carbide formation at prior austenite grain boundaries, was associated with TME in the high P steel.K IC values reflected TME in the high P steels but did not show TME in the low P steel, a result explained by the formation of a narrow zone of ductile fracture adjacent to the fatigue precrack during fracture toughness testing. The ductile fracture zone was attributed to the low rate of work hardening characteristic of martensitic steels tempered above 473 K (200°C).  相似文献   

9.
A study of the micro-mechanisms of tempered martensite embrittlement was made on a series of 4340-type steels in which the contents of manganese, silicon, and trace impurities, especially phosphorus and sulfur, were varied. One plain-carbon steel was also examined. The study employed Charpy impact tests and four-point slow-bend tests coupled with an elastic-plastic stress analysis, as well as scanning electron fractography, Auger electron spectroscopy, transmission electron microscopy of extraction replicas, and magnetic measurements of the transformation of retained austenite. The results indicate that in these steels the TME phenomenon is an intergranular embrittlement problem caused by carbide precipitation on prior austenite grain boundaries which are already weakened by segregated phosphorus and sulfur. The transformation of intragranular retained austenite is concluded not to be of primary significance in the TME in these steels, although it may contribute to the magnitude of the TME toughness trough.  相似文献   

10.
Tempering reactions in ternary Fe-2M-0.7C steels (M=Cr, Ni, Mn, Mo, and Si) were studied by correlative dilatometry and magnetic measurements at room temperature. Magnetic measurements were conducted after tempering at progressively higher temperatures. Based on the magnitude of demagnetization in the temperature range associated with the tempering stage I contraction, Mn- and Si-added steels formed the largest and smallest fractions of transition carbides, respectively. Estimation of the magnetization of paraequilibrium cementite indicated that Cr, Mn, and Mo reduced the magnetization while Ni increased it. In the presence of Si, the decomposition of retained austenite and cementite formation were shifted to higher temperatures. At temperatures above approximately 723 K (450 °C), the enrichment of cementite with Mn and Cr significantly reduced the total magnetization. In the Mo-added steel, on the other hand, the magnetization slightly increased implying the formation of ferromagnetic Mo-rich carbides. For the Ni- and Si-added steels, the magnetization remained almost constant indicating minimal redistribution of Ni and Si subsequent to the formation of cementite. The possibility of analyzing the latter redistribution is one of the main advantages of sequential tempering and magnetic measurements at room temperature compared to in situ thermomagnetic measurements.  相似文献   

11.
This paper reports a study of tempered martensite embrittlement in a Ni-Cr steel doped with 0.01 wt pct S. The segregation of sulfur to the grain boundaries and the associated embrittlement of this material are very dependent upon the austenitizing temperature. If the austenitizing temperature is below 1050 °C very little embrittlement and very little intergranular fracture are observed because sulfur remains precipitated as chromium sulfide. At higher austenitizing temperatures the sulfides dissolve and sulfur segregates to the grain boundaries. Because of the high bulk content, the sulfur concentration at the grain boundaries becomes great enough for the sulfides to reprecipitate there. This leads to low energy intergranular ductile fracture. However, some sulfur remains unprecipitated at the boundary and can lower the cohesive strength across the boundary. When plate-like cementite precipitates at the grain boundary during tempering heat treatments at 300 to 400 °C, the combination of the carbides and the unprecipitated sulfur causes intergranular fracture and tempered martensite embrittlement.  相似文献   

12.
  Mechanical properties of quenching, intercritical quenching and tempering (QLT) treated steel containing Ni of 9% were evaluated from specimens subject to various tempering temperatures. The detailed microstructures of steel containing Ni of 9% at different tempering temperatures were observed by optical microscope (OM) and transmission electron microscope (TEM). The volume fraction of austenite was estimated by XRD. The results show that high strength and cryogenic toughness of steel containing Ni of 9% are obtained when the tempering temperature are between 540 and 580 ℃. The microstructure keeps the dual phase lamellar structure after the intercritical quenching and there is cementite created in the Ni rich constituents when tempering temperature is 540 ℃. When tempering temperatures are between 560 and 580 ℃, the reversed austenites (γ′) grow up and the dual phase lamellar structure is not clear. The γ′ becomes instable at 600 ℃. When tempered at temperature ranging from 500 to 520 ℃, the increase of dislocation density in the lamellar matrix makes both tensile strength and yield strength decrease. When tempered at 540 ℃ and higher temperature, the yield strength decreases continuously because the C and alloying elements in the matrix are absorbed by the cementite and the γ′, so the yield ratio is decreased by the γ′. There are two toughness mechanisms at different tempering temperatures. One is that the precipitation of cementite absorbs the carbon in the steel which plays a major role in improving cryogenic toughness at lower temperature. Another is that the γ′ and the purified matrix become major role at higher tempering temperature. When the tempering temperature is 600 ℃, the stability of γ′ is decreased quickly, even the transformation takes place at room temperature, which results in a sharp decrease of Charpy V impact energy at 77 K. The tempering temperature range is enlarged by the special distribution of cementite and the lamellar structure.  相似文献   

13.
The effect of tempering on the mechanical properties and fracture behavior of two 3 pct Co-modified 9 pct Cr steels with 2 and 3 wt pct W was examined. Both steels were ductile in tension tests and tough under impact tests in high-temperature tempered conditions. At T  923 K (650 °C), the addition of 1 wt pct W led to low toughness and pronounced embrittlement. The 9Cr2W steel was tough after low-temperature tempering up to 723 K (450 °C). At 798 K (525 °C), the decomposition of retained austenite induced the formation of discontinuous and continuous films of M23C6 carbides along boundaries in the 9Cr2W and the 9Cr3W steels, respectively, which led to tempered martensite embrittlement (TME). In the 9Cr2W steel, the discontinuous boundary films played a role of crack initiation sites, and the absorption energy was 24 J cm?2. In the 9Cr3W steel, continuous films provided a fracture path along the boundaries of prior austenite grains (PAG) and interlath boundaries in addition that caused the drop of impact energy to 6 J cm?2. Tempering at 1023 K (750 °C) completely eliminated TME by spheroidization and the growth of M23C6 carbides, and both steels exhibited high values of adsorbed energy of ≥230 J cm?2. The addition of 1 wt pct W extended the temperature domain of TME up to 923 K (650 °C) through the formation of W segregations at boundaries that hindered the spheroidization of M23C6 carbides.  相似文献   

14.
摘要:采用不同的宽展比对水电站用低碳贝氏体钢07MnCrMoVR进行了轧制,对回火前后试验钢的微观组织形貌进行了观察,并对力学性能进行了检验,同时利用EDS能谱分析了回火过程中碳化物析出行为。结果表明:采用较小的宽展比能提高粗轧纵轧阶段的单道次压下率以及变形区系数,有效地破碎奥氏体再结晶晶粒,轧制后获得细小的粒状贝氏体组织,高温回火后析出大量的渗碳体和合金碳化物均匀弥散地分布在贝氏体铁素体基体上。随着回火温度的提高,试验钢强度性能呈现先升高再降低的现象,伸长率和低温冲击韧性持续升高。  相似文献   

15.
The susceptibility to temper embrittlement of eight different rotor steels has been studied in terms of the effects of composition, of cooling rate from tempering temperature, of isothermal aging, of steel-making practice and of strength level and tempering temperature. The Ni Cr Mo V steels tested showed increasing susceptibility to temper embrittlement with increasing nickel content. The normally marked susceptibility of a high phosphorus 3 pct Cr Mo steel was eliminated by the removal of manganese. Embrittlement in a 3 pct Ni Cr Mo V steel was caused by the equilibrium segregation of solute atoms to the prior austenite grain boundaries. Two Cr Mo V steels tested were not susceptible to temper embrittlement. Electroslag remelting and refining had very little effect on the susceptibility of the steels tested. Strength level and tempering temperature had no effect on the degree of embrittlement of the 3 pct Ni Cr Mo V disc steel. The possibilities of remedial action include an adjustment of the post tempering cooling rate, to optimize the conflicting interests of minimum temper embrittlement and adequate stress relief, and the production of very low manganese rotor steels.  相似文献   

16.
The tempering behavior of three steels each containing 0.20 pct C and having tungsten contents of 2.1, 3.9 and 5.9 pct has been followed by thermomagnetic analysis and electron microscopy. Using a Sucksmith Balance, the proportions of autotempered carbide and retained austenite in as-quenched specimens were estimated, and the amount of cementite precipitated upon subsequent tempering measured accurately. Solution of tungsten in cementite during tempering was monitored by observing changes in Curie temperature. The magnetic nature of alloy carbides precipitating at high temperatures allowed tentative identification and this directed and assisted the electron microscopy study which provided new information on the morphology of tungsten carbides. J. B. LUPTON, formerly Research Student, Metallurgy Department, University of Sheffield, England, S. MURPHY, formerly Research Fellow, Metallurgy Department, University of Sheffield,  相似文献   

17.
 The tempering behavior was experimentally studied in lath martensitic wear-resistant steels with various Mo/Ni contents after tempering at different temperatures from 200 to 600 ℃. It is shown that a good combination of hardness (HV) (420-450) and -20 ℃ impact toughness (38-70 J) can be obtained after quenching and tempering at 200-250 ℃. The microstructure at this temperature is lath structure with rod-like and/or flake-like ε-carbide with about 10 nm in width and 100 nm in length in the matrix, and the fracture mechanism is quasi-cleavage fracture combining with ductile fracture. Tempering at temperature from 300 to 400 ℃ results in the primary quasi-cleavage fracture due to the carbide transformation from resolved retained austenite and impurity segregation between laths or blocks. However, when the tempering temperature is higher than 500 ℃, the hardness (HV) is lower than 330 and the fracture mechanism changes to ductile fracture due to the spheroidization and coarsening of cementite. Additions of Mo and Ni have no significant effects on the carbides morphologies at low tempering temperatures, but improve the resistance to softening and embrittling for steels when tempered at above 350 ℃.  相似文献   

18.
谌康  徐乐  时捷  何肖飞  王毛球 《钢铁》2017,52(5):94-99
 通过SEM、TEM、XRD、化学相分析等方法对比研究新型扭杆弹簧用40Si2Ni2CrMoV钢(代号N1)和现有45CrNiMoVA钢微观组织及其对力学性能的影响,并利用慢应变速率拉伸方法对比研究两种不同扭杆弹簧用钢的氢脆敏感性。结果发现,N1钢由于添加硅、钼等抗回火软化元素,使得N1钢在较高的300 ℃温度回火时还能保持一定的抗拉强度,N1钢有大量细小的ε-碳化物析出,使得屈服强度增加,屈强比在0.80以上,45CrNiMoVA钢经180 ℃低温回火后屈服强度在1 550 MPa左右,屈强比只有0.72;经相同条件充氢后,N1钢的慢拉伸强度下降幅度较小,其试样断口中也没有观察到沿晶断裂特征,N1钢的氢脆敏感性明显低于45CrNiMoVA钢。  相似文献   

19.
The effects of tempering reactions which produce molybdenum-rich carbides on the temper embrittlement of NiCrMo, NiCrMoV, CrMo, and CrMoV steels, particularly embrittlement due to phosphorus segregation, are reviewed. Molybdenum can act as an effective scavenger for phosphorus and other embrittling impurities, but the scavenging is lost when the molybdenum is precipitated in carbides as a result of continued tempering during service at elevated temperatures. This leads to very slow embrittlement, controlled by the rates of alloy carbide formation, rather than by the diffusion of phosphorus, for example. The presence of vanadium apparently retards the embrittlement process even more by interfering with the formation of the molybdenum-rich carbides. Observations of the temper embrittlement behavior, and of the effects of service exposure, in three CrMoV steam turbine rotors are also reported and are shown to be consistent with the previous results.  相似文献   

20.
The fatigue crack growth rates,da/dN, and the fracture toughness, KIc have been measured in two high-carbon martensitic stainless steels, 440C and BG42. Variations in the retained austenite contents were achieved by using combinations of austenitizing temperatures, refrigeration cycles, and tempering temperatures. In nonrefrigerated 440C tempered at 150 °C, about 10 vol pct retained austenite was transformed to martensite at the fracture surfaces duringK Ic testing, and this strain-induced transformation contributed significantly to the fracture toughness. The strain-induced transformation was progressively less as the tempering temperature was raised to 450 °C, and at the secondary hardening peak, 500 °C, strain-induced transformation was not observed. In nonrefrigerated 440C austenitized at 1065 °C,K Ic had a peak value of 30 MPa m1/2 on tempering at 150 °C and a minimum of 18 MPa m1/2 on tempering at 500 °C. Refrigerated 440C retained about 5 pct austenite, and did not exhibit strain-induced transformation at the fracture surfaces for any tempering temperature. TheK Ic values for corresponding tempering temperatures up to the secondary peak in refrigerated steels were consistently lower than in nonrefrigerated steels. All of the BG42 specimens were refrigerated and double or quadruple tempered in the secondary hardening region; theK Ic values were 16 to 18 MPa m1/2 at the secondary peak. Tempered martensite embrittlement (TME) was observed in both refrigerated and nonrefrigerated 440C, and it was shown that austenite transformation does not play a role in the TME mechanism in this steel. Fatigue crack propagation rates in 440C in the power law regime were the same for refrigerated and nonrefrigerated steels and were relatively insensitive to tempering temperatures up to 500 °C. Above the secondary peak, however, the fatigue crack growth rates exhibited consistently lower values, and this was a consequence of the tempering of the martensite and the lower hardness. Nonrefrigerated steels showed slightly higher threshold values, ΔKth, and this was ascribed to the development of compressive residual stresses and increased surface roughening in steels which exhibit a strain-induced martensitic transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号