首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using inverse kinematic solutions for self-motion of a class of 9-R redundant robots, a conjugate-gradient based constrained optimization scheme for incremental trajectory planning is formulated. The proposed scheme has been evaluated and proved to be an efficient optimization method for redundancy utilization. It can also be used for studying 7-R and 8-R manipulators by simply restricting to one-variable and two-variable optimization, respectively. In contrast with other approaches which are based on the Jacobian, our scheme exploits the availability of closed-form inverse kinematic solutions to give more effective and accurate results.  相似文献   

2.
Vision based redundant manipulator control with a neural network based learning strategy is discussed in this paper. The manipulator is visually controlled with stereo vision in an eye-to-hand configuration. A novel Kohonen’s self-organizing map (KSOM) based visual servoing scheme has been proposed for a redundant manipulator with 7 degrees of freedom (DOF). The inverse kinematic relationship of the manipulator is learned using a Kohonen’s self-organizing map. This learned map is shown to be an approximate estimate of the inverse Jacobian, which can then be used in conjunction with the proportional controller to achieve closed loop servoing in real-time. It is shown through Lyapunov stability analysis that the proposed learning based servoing scheme ensures global stability. A generalized weight update law is proposed for KSOM based inverse kinematic control, to resolve the redundancy during the learning phase. Unlike the existing visual servoing schemes, the proposed KSOM based scheme eliminates the computation of the pseudo-inverse of the Jacobian matrix in real-time. This makes the proposed algorithm computationally more efficient. The proposed scheme has been implemented on a 7 DOF PowerCube? robot manipulator with visual feedback from two cameras.  相似文献   

3.
《Advanced Robotics》2013,27(4):327-344
Coordinate transformation is one of the most important issues in robotic manipulator control. Robot tasks are naturally specified in work space coordinates, usually a Cartesian frame, while control actions are developed on joint coordinates. Effective inverse kinematic solutions are analytical in nature; they exist only for special manipulator geometries and geometric intuition is usually required. Computational inverse kinematic algorithms have recently been proposed; they are based on general closed-loop schemes which perform the mapping of the desired Cartesian trajectory into the corresponding joint trajectory. The aim of this paper is to propose an effective computational scheme to the inverse kinematic problem for manipulators with spherical wrists. First an insight into the formulation of kinematics is given in order to detail the general scheme for this specific class of manipulators. Algorithm convergence is then ensured by means of the Lyapunov direct method. The resulting algorithm is based on the hand position and orientation vectors usually adopted to describe motion in the task space. The analysis of the computational burden is performed by taking the Stanford arm as a reference. Finally a case study is developed via numerical simulations.  相似文献   

4.
This work addresses the problem of the accurate task‐space control subject to finite‐time convergence. Dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end effector. Furthermore, the movement is to be accomplished in such a way as to optimize some performance index. Based on suitably defined task‐space non‐singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of inverse‐free robust controllers consisting of a Jacobian transpose component plus a compensating term, which seem to be effective in counteracting uncertain dynamics, unbounded disturbances and (possible) kinematic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a Selective Compliant Articulated Robot for Assembly (SCARA) type consisting of three revolute kinematic pairs and operating in a two‐dimensional task space illustrate performance of the proposed controllers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the approximation problem of Jacobian inverse kinematics algorithms for redundant robotic manipulators. Specifically, we focus on the approximation of the Jacobian pseudo inverse by the extended Jacobian algorithm. The algorithms are defined as certain dynamic systems driven by the task space error, and identified with vector field distributions. The distribution corresponding to the Jacobian pseudo inverse is non-integrable, while that associated with the extended Jacobian is integrable. Two methods of devising the approximating extended Jacobian algorithm are examined. The first method is referred to as differential geometric, and relies on the approximation of a non-integrable distribution (in fact: a codistribution) by an integrable one. As an alternative, the approximation problem has been formulated as the minimization of an approximation error functional, and solved using the methods of the calculus of variations. Performance of the obtained extended Jacobian inverse kinematics algorithms has been compared by means of computer simulations involving the kinematics model of the 7 dof industrial manipulator POLYCRANK. It is concluded that the differential geometric method offers a rapid, while the variational method a systematic tool for solving inverse kinematic problems.  相似文献   

6.
针对非完整约束导致的自由漂浮空间机器人广义雅可比矩阵动力学奇异性问题,提出一种间接求解机器人逆运动学的方案.该方案通过运动方程分解并构造迭代函数,将动力学奇异转换为运动学奇异问题,避免直接求解逆广义雅可比矩阵,解决广义雅可比矩阵动力学参数相关特性问题,仿真结果表明该方法能够有效地实现自由漂浮空间机器人回避动力学奇异的非完整轨迹规划.  相似文献   

7.
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.  相似文献   

8.
An Adaptive Regulator of Robotic Manipulators in the Task Space   总被引:1,自引:0,他引:1  
This note addresses the problem of position control of robotic manipulators both nonredundant and redundant in the task space. A computationally simple class of task space regulators consisting of a transpose adaptive Jacobian controller plus an adaptive term estimating generalized gravity forces is proposed. The Lyapunov stability theory is used to derive the control scheme. The conditions on controller gains ensuring asymptotic stability are obtained herein in a form of simple inequalities including some information extracted from both robot kinematic and dynamic equations. The performance of the proposed control strategy is illustrated through computer simulations for a direct-drive arm of a SCARA type redundant manipulator with the three revolute kinematic pairs operating in a two-dimensional task space.  相似文献   

9.
An inverse kinematic analysis addresses the problem of computing the sequence of joint motion from the Cartesian motion of an interested member, most often the end effector. Although the rates and accelerations are related linearly through the Jacobian, the positions go through a highly nonlinear transformation from one space to another. Hence, the closed-form solution has been obtained only for rather simple manipulator configurations where joints intersect or where consecutive axes are parallel or perpendicular. For the case of redundant manipulators, the number of joint variables generally exceeds that of the constraints, so that in this case the problem is further complicated due to an infinite number of solutions. Previous approaches have been directed to minimize a criterion function, taking into account additional constraints, which often implies a time-consuming optimization process. In this article, a different approach is taken to these problems. A Newton-Raphson numerical procedure has been developed based on a composite Jacobian which now includes rows for all members under constraint. This procedure may be applied to solve the inverse kinematic problem for a manipulator of any mechanical configuration without having to derive beforehand a closed-form solution. The technique is applicable to redundant manipulators since additional constraints on other members as well as on the end effector may be imposed. Finally, this approach has been applied to a seven degree-of-freedom manipulator, and its ability to avoid obstacles is demonstrated.  相似文献   

10.
Kinematic control of redundant robot manipulators: A tutorial   总被引:5,自引:0,他引:5  
In this paper, we present a tentatively comprehensive tutorial report of the most recent literature on kinematic control of redundant robot manipulators. Our goal is to lend some perspective to the most widely adopted on-line instantaneous control solutions, namely those based on the simple manipulator's Jacobian, those based on the local optimization of objective functions in the null space of the Jacobian, those based on the task space augmentation by additional constraint tasks (with task priority), and those based on the construction of inverse kinematic functions.  相似文献   

11.
This paper deals with real-time implementation of visual-motor control of a 7 degree of freedom (DOF) robot manipulator using self-organized map (SOM) based learning approach. The robot manipulator considered here is a 7 DOF PowerCube manipulator from Amtec Robotics. The primary objective is to reach a target point in the task space using only a single step movement from any arbitrary initial configuration of the robot manipulator. A new clustering algorithm using Kohonen SOM lattice has been proposed that maintains the fidelity of training data. Two different approaches have been proposed to find an inverse kinematic solution without using any orientation feedback. In the first approach, the inverse Jacobian matrices are learnt from the training data using function decomposition. It is shown that function decomposition leads to significant improvement in accuracy of inverse kinematic solution. In the second approach, a concept called sub-clustering in configuration space is suggested to provide multiple solutions for the inverse kinematic problem. Redundancy is resolved at position level using several criteria. A redundant manipulator is dexterous owing to the availability of multiple configurations for a given end-effector position. However, existing visual motor coordination schemes provide only one inverse kinematic solution for every target position even when the manipulator is kinematically redundant. Thus, the second approach provides a learning architecture that can capture redundancy from the training data. The training data are generated using explicit kinematic model of the combined robot manipulator and camera configuration. The training is carried out off-line and the trained network is used on-line to compute the joint angle vector to reach a target position in a single step only. The accuracy attained is better than the current state of art.  相似文献   

12.
机器人运动学反解中的奇异点处理   总被引:5,自引:0,他引:5  
朱向阳  熊有伦 《机器人》1996,18(5):264-267
本文研究机器人运动学反解中的奇异点处理问题,给出了机器人微分运动Jacobian矩阵J(q)条件数的一个上界,并在此基础上提出机器人关节速度阻尼伪逆解方法中阻尼系数的一种自适应调整方法,该方法可以保证在奇异点附近伪逆解的稳定性。  相似文献   

13.
In this article, the problem of controlling redundant manipulators to reduce collision impact effects is considered, and an augmented kinematics and impedance control scheme is proposed for its solution. The proposed scheme achieves satisfactory performance by minimizing the magnitudes of impulsive forces as well as reducing rebound effects of the end-effector. In the proposed control scheme, kinematic redundancy is resolved using an augmented kinematics approach where the augmentation of the Jacobian matrix is based on an impact model derived using the Cartesian-space dynamic model of the manipulator. The proposed impact controller uses a simplified impedance control scheme aimed at reducing impulsive forces as well as rebound effects. The performance of the proposed controller is illustrated by computer simulations. © 2995 John Wiley & Sons, Inc.  相似文献   

14.
Collision avoidance is an absolutely essential requirement for a robot to complete a task in an environment with obstacles. For kinematically redundant robots, collision avoidance can be achieved by making full use of the redundancy. In this article, the problem of determining collision-free joint space trajectories for redundant robots in an environment with multiple obstacles is considered, and the “command generator” approach is employed to generate such trajectories. In this approach, a nondifferentiable distance objective function is defined and is guaranteed to increase wherever possible along the trajectory through a vector in N(J), the null space of Jacobian matrix J. Algorithms that implement this nondifferentiable optimization problem are fully developed. It is shown that the proposed collision-free trajectory generation scheme is efficient and practical. Extensive simulation results of a four-link robot example are presented and analyzed.  相似文献   

15.
A new uncalibrated eye-to-hand visual servoing based on inverse fuzzy modeling is proposed in this paper. In classical visual servoing, the Jacobian plays a decisive role in the convergence of the controller, as its analytical model depends on the selected image features. This Jacobian must also be inverted online. Fuzzy modeling is applied to obtain an inverse model of the mapping between image feature variations and joint velocities. This approach is independent from the robot's kinematic model or camera calibration and also avoids the necessity of inverting the Jacobian online. An inverse model is identified for the robot workspace, using measurement data of a robotic manipulator. This inverse model is directly used as a controller. The inverse fuzzy control scheme is applied to a robotic manipulator performing visual servoing for random positioning in the robot workspace. The obtained experimental results show the effectiveness of the proposed control scheme. The fuzzy controller can position the robotic manipulator at any point in the workspace with better accuracy than the classic visual servoing approach.  相似文献   

16.
In this paper, a new method is proposed of solving the inverse kinematic problem for robot manipulators whose kinematics are allowed to possess singularities. The method is based upon the so-called generalized Newton algorithm, introduced by S. Smale, and can be adopted to both nonredundant and redundant kinematics. Moreover, given a pair of points in the external space of a manipulator, the method is capable of generating a minimum-length trajectory joining the points (a geodesic), in particular a straight-line trajectory. Results of representative computer experiments, including those with the PUMA 560 kinematics, are reported in order to illustrate the performance of the method.  相似文献   

17.
The use of artificial neural networks is investigated for application to trajectory control problems in robotics. The relative merits of position versus velocity control is considered and a control scheme is proposed in which neural networks are used as static maps (trained off-line) to compute the inverse of the manipulator Jacobian matrix. A proof of the stability of this approach is offered, assuming bounded errors in the static map. A representative two-link robot is investigated using an artificial neural network which has been trained to compute the components of the inverse of the Jacobian matrix. The controller is implemented in the laboratory and its performance compared to a similar controller with the analytical inverse Jacobian matrix.  相似文献   

18.
We consider the inverse kinematic problem for mobile manipulators consisting of a nonholonomic mobile platform and a holonomic manipulator on board the platform. The kinematics of a mobile manipulator are represented by a driftless control system with outputs together with the associated variational control system. The output reachability map of the driftless control system determines the instantaneous kinematics, while the output reachability map of the variational system plays the role of the analytic Jacobian of the mobile manipulator. Relying on a formal analogy between the kinematics of stationary and mobile manipulators we exploit the extended Jacobian construction in order to design a collection of extended Jacobian inverse kinematics algorithms for mobile manipulators. It has been proved mathematically and confirmed in computer simulations that these algorithms are capable of efficiently solving the inverse kinematic problem. Moreover, a choice of the Jacobian extension may lay down some guidelines for the platform‐manipulator motion coordination. © 2002 Wiley Periodicals, Inc.  相似文献   

19.
This paper proposes an online inverse-forward adaptive scheme with a KSOM based hint generator for solving the inverse kinematic problem of a redundant manipulator. In this approach, a feed-forward network such as a radial basis function (RBF) network is used to learn the forward kinematic map of the redundant manipulator. This network is inverted using an inverse-forward adaptive scheme until the network inversion solution guides the manipulator end-effector to reach a given target position with a specified accuracy. The positioning accuracy, attainable by a conventional network inversion scheme, depends on the approximation error present in the forward model. But, an accurate forward map would require a very large size of training data as well as network architecture. The proposed inverse-forward adaptive scheme effectively approximates the forward map around the joint angle vector provided by a hint generator. Thus the inverse kinematic solution obtained using the network inversion approach can take the end-effector to the target position within any arbitrary accuracy.In order to satisfy the joint angle constraints, it is necessary to provide the network inversion algorithm with an initial hint for the joint angle vector. Since a redundant manipulator can reach a given target end-effector position through several joint angle vectors, it is desirable that the hint generator is capable of providing multiple hints. This problem has been addressed by using a Kohonen self organizing map based sub-clustering (KSOM-SC) network architecture. The redundancy resolution process involves selecting a suitable joint angle configuration based on different task related criteria.The simulations and experiments are carried out on a 7 DOF PowerCube? manipulator. It is shown that one can obtain a positioning accuracy of 1 mm without violating joint angle constraints even when the forward approximation error is as large as 4 cm. An obstacle avoidance problem has also been solved to demonstrate the redundancy resolution process with the proposed scheme.  相似文献   

20.
冗余度卫星搭载机械臂神经网络优化控制   总被引:1,自引:0,他引:1  
研究了节点变换函数参数可调的多层神经网络,并将这种神经网络用于控制冗余度卫星搭载机器人系统;提出了卫星位姿最小摄动的冗余度机器人臂神经网络控制方案,在这种方案中将系统的正运动学方程作为神经网络学习的对象,由神经网络学习拟合系统运动学,实现了机器人臂运动和卫星运动的解耦,在机器人臂的运动和卫星本体解耦的基础上,基于带动量项的BP解法,实现了系统的最小动能优化控制,利用平面4关节星载机器人系统进行了仿真,取得比较理想的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号