首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Moldability and mechanical properties of polyethylene terephthalate (PET) under normal molding conditions were found to improve significantly when it was blended with bisphenol-A-polycarbonate (PC) and polypropylene (PP) to form ternary polymer blend systems. DSC results of these blends revealed that the PET and PC components formed a miscible blend while PP being incompatible with them, formed a separate phase. PP was also found to form a sleeve around the PET-PC miscible phase and, thereby, showed a skin-core type of morphology. Variations of mechanical properties with varying amounts of PP was measured keeping the ratio of PET and PC constant. Tensile and flexural properties of the blends decrease with the amount of PP. Notched impact strength increases up to a certain level of PP and then decreases, while the unnotched values decrease gradually. The effect of annealing on the mechanical properties of these blends have been discussed on the basis of the increased crystallinity of some of the components.  相似文献   

2.
Methylene diphenyl diisocyanate (MDI) affects the morphology, rheological, mechanical, and relaxation properties, as well as tendency to crystallize of PET in PET/PC/(PP/EPDM) ternary blends produced by the reactive extrusion. Irrespective of the blend phase structure, the introduction of MDI increases the melt viscosity (MFI dropped), resulting from an increase in the molecular weight of the polymer chains; the PET crystallinity was also reduced. MDI favors compatibility of PET with PC in PET/PC/(PP/EPDM) blends. This is explained by intensified interphase interactions on the level of segments of macromolecules as well as monomer units. The presence of MDI causes a substantial rise in the dynamic shear modulus within the high‐elastic region of PET (for temperature range between Tg,PET and that of PET cold crystallization); the processes of PET cold crystallization and melt crystallization become retarded; the glass‐transition temperatures for PET and PC become closer to each other. MDI affects insignificantly the blend morphology or the character of interactions between the disperse PP/EPDM blend and PET/PC as a matrix. PP/EPDM reduces the intensity of interphase interactions in a PET/PC/(PP/EPDM), but a rise in the degree of material heterogeneity. MDI does not change the mechanism of impact break‐down in the ternary blends mentioned above. Increased impact strength of MDI‐modified materials can be explained by higher cohesive strength and resistance to shear flow at impact loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The method of two-step melt blending was used to prepare polycarbonate/polypropylene/attapulgite ternary nanocomposite, and the various techniques including gel permeation chromatography, rheometer, transmission electron microscope, dynamic mechanical analysis were used to examine the degradation of polycarbonate (PC) and the nanocomposite morphology. The results showed that the molecular weight degradation of PC triggered by attapulgite (AT) during the direct blending process was inhibited effectively by using two-step melt blending, in which AT was blended with polypropylene (PP) prior to compound with PC. The morphology of encapsulation was formed in the PC matrix, where PP encapsulates AT fibrillar single crystals to form a core-shell inclusion. Dynamic mechanical analysis (DMA) measurements showed that the PC/PP/AT ternary nanocomposites were more effective than conventional PC/PP blends in reinforcement, meanwhile the addition of AT in the ternary nanocomposites shifted the glass transition temperature of the PP phase to a higher value.  相似文献   

4.
1 INTRODUCTION Polycarbonate (PC) is an important and widely used engineering thermoplastic, however, it exhibits high notch sensitivity and is susceptible to crazing or cracking on exposure to various solvents[1]. PC was modified in many different ways, particularly by blending with polyolefin resin such as polyethylene (PE), polypropylene (PP) for use in demanding appli- cations when its outstanding notched impact strength is important[2,3]. Unfortunately, the enhance of the toughness…  相似文献   

5.
The morphology development of polypropylene (PP)/polyethylene terephthalate (PET)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and their fibers were studied by means of scanning electron microscopy (SEM) in conjunction with the melt linear viscoelastic measurements. The morphology of the blends was also predicted by using Harkin's spreading coefficient approach. The samples varying in composition with PP as the major phase and PET and SEBS as the minor phases were considered. Although SEM of the binary blends showed matrix‐dispersed type morphology, the ternary blend samples exhibited a morphological feature in which the dispersed phase formed aggregates consisting of both PET and SEBS particles distributed in the PP matrix. The SEM of the blend samples containing 30 and 40 wt % of total dispersed phase showed an agglomerated structure formed between the aggregates. The SEM of the PP/PET binary fiber blends showed long well‐oriented microfibrils of PET whereas in the ternary blends, the microfibrils were found to have lower aspect ratio with a fraction of the SEBS stuck on the microfibril fracture surfaces. These results were attributed to a core‐shell type morphology in which the PET and SEBS formed the core‐shells distributed in the matrix. The melt viscoelastic behavior of the ternary blends containing less than 30 wt % of the total dispersed phase was found to be similar to the matrix and binary blend samples whereas the samples containing 30 and 40 wt % of dispersed phases exhibited a pronounced viscosity upturn and nonterminal storage modulus in low frequency range. These results were found to be in good agreement with the morphological results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Abstract

The modification of polypropylene (more precisely, a propylene/ethylene random copolymer containing 10% ethylene) has been accomplished by melt grafting of acrylamide tertiary butyl sulfonic acid(ATBS) initiated with a radical initiator. The resulting PP-g-ATBS was used to prepare ternary blends of PA1O1O/PP-g-ATBS/PP and binary blends of PA1010/PP. The size of domains of PP in ternary blends is much smaller than that in binary blends. It was found that mechanical properties of ternary blends obviously surpassed that of binary blends. These behavior could be contributed to chemical interactions between sulfonic acid groups of PP-g-ATBS and end amino group of PA1010. Thermal and rheological analysis were performed to confirm the possible chemical reactions taken place during the blending process.  相似文献   

7.
The article deals with method of preparation, rheological properties, phase structure, and morphology of binary blend of poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) and ternary blends of polypropylene (PP)/(PET/PBT). The ternary blend of PET/PBT (PES) containing 30 wt % of PP is used as a final polymer additive (FPA) for blending with PP and subsequent spinning. In addition commercial montane (polyester) wax Licowax E (LiE) was used as a compatibilizer for spinning process enhancement. The PP/PES blend fibers containing 8 wt % of polyester as dispersed phase were prepared in a two‐step procedure: preparation of FPA using laboratory twin‐screw extruder and spinning of the PP/PES blend fibers after blending PP and FPA, using a laboratory spinning equipment. DSC analysis was used for investigation of the phase structure of the PES components and selected blends. Finally, the mechanical properties of the blend fibers were analyzed. It has been found that viscosity of the PET/PBT blends is strongly influenced by the presence of the major component. In addition, the major component suppresses crystallinity of the minor component phase up to a concentration of 30 wt %. PBT as major component in dispersed PES phase increases viscosity of the PET/PBT blend melts and increases the tensile strength of the PP/PES blend fibers. The impact of the compatibilizer on the uniformity of phase dispersion of PP/PES blend fibers was demonstrated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4222–4227, 2006  相似文献   

8.
Abstract:

Immiscible blends of poly(ethylene terephthalate) (PET)/polypropylene (PP), polycarbonate (PC)/PP and PC/linear low-density polyethylene (LLDPE) were examined to study the influence of the high interfacial contact (pseudo-adhesion) on the mechanical properties and the morphology developed during elongation. The high interfacial contact resulted from the contraction difference of the two polymers during cooling from processing temperature to room temperature. It was confirmed that high interfacial contact could improve the mechanical properties of the blends. By calculation, the compressive force in the PET particles for PET/PP blends exceeded the yield stress of PET, satisfying the conditions for solid in-situ fibrillation. But scanning electronic microscopy (SEM) micrographs showed that PET particles were only slightly deformed into ellipsoids. The morphological evolution of PC/PP and PC/LLDPE blends were in line with the prediction for solid in-situ fibrillation. In addition, the factors determining the solid in-situ fibrillation of the immiscible blends were summarized: (a) the specimen has sufficient large deformation, (b) the matrix has sufficient high modulus, and (c) interfacial interactions are strong enough.  相似文献   

9.
In this study, we prepared ternary poly(ethylene terephthalate) (PET)–nitrile butadiene rubber (NBR)–polycarbonate (PC) blends through a molten mixing procedure, and with a corotating extruder, we studied the morphology and thermodynamic properties of each purified polymer and the binary and ternary blends with different compositions. Dynamic mechanical analysis of both the PET–PC and PET–NBR samples showed individual loss peaks for each component, but in different ternary samples, the effects of different percentages of components (PC–PC and PET–NBR) were observed; this revealed changes in the loss peak locations. Individual loss peaks of PET and PC in the ternary PET–NBR–PC blends (81/9/10 and 63/30/7)—proof of the miscibility of the samples—were also observed in this study. The thermal properties of the samples were measured and examined with the thermogravimetric analysis and differential thermogravimetry testing methods. The activation energy and order of reaction values for the samples under an air atmosphere with single-rate methods of heating were studied. Finally, the relation between the type of morphology and the thermal degradation behavior was investigated. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47171.  相似文献   

10.
Summary The effects of blending sequence and the addition of an interfacial agent (triblock copolymer styrene-butylene ethylene/styrene, Kraton G1652) on the morphology and the mechanical properties of Polycarbonate (PC)/Polypropylene (PP) blends prepared by injection molding were studied. This study presents an analysis of impact resistance, tensile properties and morphology of the raw materials and the blends at different compositions. The blends, before being injected, were prepared in a twin-screw extruder by different sequences of blending. The results indicate that the blending sequence and the presence of humidity significantly affect the properties and morphology of the blends. For ternary blends (PC/PP/Kraton), only one-step mixing before injection molding proved to be sufficient to improve mechanical properties. Increasing the amount of blending steps did not present a significant change in properties. With the addition of the interfacial agent, higher impact resistance and particle size reduction were observed.  相似文献   

11.
Pierre Le Corroller 《Polymer》2011,52(17):3827-3834
Partial wetting in a ternary polymer blend is the thermodynamic state where all three phases meet at a three-phase line of contact. Pickering emulsions, where solid particles situate at the interface of two other phases is a classic example of this state. This paper studies the presence of partial wetting in PE/PP/PS and in PE/PP/PC ternary polymer blends and examines, in particular, the influence of polyethylene viscosity on PS droplet formation at the PE/PP interface. Quantitative analysis of PS droplet growth and coverage at the PE/PP interface during static annealing were obtained by image analysis. A new approach was established to estimate the co-continuous PE/PP coarsening rate and was found to be in agreement with previous studies. In this work it is shown that the polyethylene viscosity can be of significant importance in ternary partial wetting when the interfacial driving force for partial wetting is weak and viscosity directly affects the quantity and size of PS droplets at the interface during annealing. The equilibrium between droplet stability at the interface, as predicted by spreading theory, and the interfacial mobility generated by coarsening determines the PS droplet size and surface coverage at the PE/PP interface.A ternary PE/PP/PC system, which displays a strong partial wetting driving force, was also investigated. The morphology of the blend system studied demonstrated a clear dominance of partial wetting over complete wetting.  相似文献   

12.
The work aims to study the role of NBR-g-GMA compatibilizer on the morphology and mechanical characteristics of PET/PC/NBR ternary blends. The compatibilizer content and amount of constitutive polymers are changed to correlate morphology development with mechanical properties. Various ternary samples are prepared using a twin-screw extruder whereat weight percent of rubbery dispersed phase (NBR+NBR-g-GMA) is changed. Analyzing the morphology of produced samples and interpretation of mechanical properties corroborated the role of the mentioned factors on the type of morphology and also the size of both individual and composite domains in these sorts of ternary blends. Based on this attempt, the mechanical properties of 50/50 blends of NBR/NBR-g-GMA, showed maximum toughness value compared to pure PET specimen. Also, the results revealed that by increasing the rubber content, the rodlike structures were disappeared; besides, toughness was increased. On the contrary, by increasing PC content, rodlike structures have seen by morphological study; however, core-shell droplets formed in the blend structure caused enhancing the impact strength and reducing Young's modulus. Ultimately, the ternary blend of 63/7/30 of PET/PC/ (NBR+NBR-g-GMA) revealed the best mechanical properties due to proper interaction between the PET matrix and rubbery domains in the presence of reactive compatibilizer.  相似文献   

13.
In this work, ternary polymer blends based on polypropylene (PP)/polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) triblock copolymer and a reactive maleic anhydride grafted SEBS (SEBS‐g‐MAH) at fixed compositions are prepared using twin‐screw extruder at different levels of die temperature (235‐245‐255°C), screw speed (70‐100‐130 rpm), and blending sequence (M1‐M2‐M3). In M1 procedure, all of the components are dry blended and extruded simultaneously using Brabender twin‐screw extruder, whereas in M2 procedure, PC, SEBS, and SEBS‐g‐MAH minor phases are first preblended in twin‐screw extruder and after granulating are added to PP continuous phase in twin‐screw extruder. Consequently, in M3 procedure, PP and SEBS‐g‐MAH are first preblended and then are extruded with other components. The influence of these parameters as processing conditions on mechanical properties of PP/PC/SEBS ternary blends is investigated using L9 Taguchi experimental design. The responding variables are impact strength and tensile properties (Young's modulus and yield stress), which are influenced by the morphology of ternary blend, and the results are used to perform the analysis of mean effect as well. It is shown that the resulted morphology, tensile properties, and impact strength are influenced by extrusion variables. Additionally, the optimum processing conditions of ternary PP/PC/SEBS blends were achieved via Taguchi analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Melt rheological properties of the ternary blend of isotactic polypropylene (PP), styreneethylene–butylene–styrene terpolymer (SEBS), and polycarbonate (PC), PP/SEBS/PC, are studied in a wide range of composition, such that PP is the matrix and SEBS and PC are the minor components, with the proportion of one varying from 0 to 30% at various fixed compositions of the other. The respective binary blends, PP/SEBS and PP/PC, studied as the reference systems for interpretation of results on the ternary blends yielded interesting new information about the morphology development and its correlation with melt rheological properties of these binary blends. The studies include the measurement of melt rheological properties on a capillary rheometer in the shear rate range 101–104 s?1 at a fixed temperature of 240°C. The data presented as conventional flow curves are analyzed for the effect of blend composition and shear rate on pseudoplasticity, melt viscosity, and melt elasticity, and role of each individual component is identified. Morphology of dispersed phases of these blends is studied through scanning electron microscopy of the cryogenically fractured and suitably etched surfaces. Variations of morphology with blend composition and shear rate showed interesting correlation with melt rheological properties, which are discussed in detail. An important finding of the morphological studies is that in the PP/SEBS/PC ternary blend the SEBS phase forms two types of morphologies depending on the blend composition and shear rate: (i) simple droplets and (ii) boundary layer at the surface of the PC droplets. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The morphology of PET/PC/E‐GMA‐MA blends made by different mixing sequences was studied by transmission electron microscopy (TEM). The results suggest that migration of the E‐GMA‐MA copolymer from the PET phase to the PC phase occurred during the mixing of the (PET/E‐GMA‐MA) pre‐blend with the PC at 10% copolymer content. As a result of the migration, the E‐GMA‐MA particles are located in the PC phase rather than in the PET phase. This finding is not in agreement with the prediction made previously by others based on the possible reaction between the epoxy group of GMA and carboxyl group of PET. Core‐shell (PC/E‐GMA‐MA) particles formed in situ during blending and the size of the core‐shell particles was controlled by the blending sequence used. Mechanical properties of the ternary blends were tested at various temperatures. Although the blending sequence does not have a noticeable effect on the yield strength and modulus of the blends, it has a strong influence on the morphology formed, which determines the impact toughness. For blends made under optimum processing conditions, the brittle‐ductile transition occurred at a lower temperature and lower elastomer content. A study of the toughening mechanism suggested that the major toughening events were cavitation plus matrix shear yielding. It is postulated that the very high impact toughness found with the (PC/E‐GMA‐MA)/PET blend (at 10% E‐GMA‐MA) originated from the bimodal particle size distribution of the core‐shell particles formed in situ.  相似文献   

16.
Blends of polycarbonate/polystyrene (PC/PS), polycarbonate/polypropylene (PC/PP) and ternary blends of the three components (PC/PS/PP) were studied. Extrudate swell of the molten blends increased with increasing concentrations of the minor components and leveled off at characteristic blend compositions. These compositions corresponded to the limits of compatibility as judged by the onset of brittleness in tensile tests. Both PS and PP appear to have some limited practical compatibility with PC. The change in extrudate swell behavior with concentration may be a rapid and convenient test for the effective concentration limits of partially miscible polymers.  相似文献   

17.
Structure–property relationship in typical polypropylene/polycarbonate/poly[styrene-b-(ethylene-co-butylene)-b-styrene] (PP/PC/SEBS) ternary blends containing maleated SEBS (SEBS-g-MAH) was investigated. Three grades of PC with different melt viscosities were used, and changes in blend morphology from PC/SEBS core–shell particles partially surrounded by SEBS-g-MAH to inverse SEBS/PC core–shell particles in PP matrix were observed upon varying the viscosity ratio of PC to SEBS. It was found that the viscosity ratio completely controls the size of the core–shell droplets and governs the type, population, and shape of the dispersed domains, as evidenced by rheological, mechanical, and thermomechanical behavioral assessments. Dynamic mechanical analysis of samples with common (PC–SEBS) and inverse (SEBS–PC) core–shell particles revealed that they show completely different behaviors: blends containing PC–SEBS presented a higher storage and loss modulus, while blends containing SEBS–PC exhibited a lower β-transition temperature. Moreover, ternary blends with PC cores showed the highest Young’s modulus values and the lowest impact strength, due to the different fracture modes of the blends containing PC–SEBS and SEPS–PC core–shell droplets, which present debonding and shell-fracture mechanisms, respectively. Morphological observations of blends with high-molecular-weight PC demonstrated the presence of detached droplets and rods of PC in the PP matrix, along with composite core–shell and rod-like particles. Micrographs of the fracture surfaces confirmed the proposed mechanisms, given the presence of stretched (debonded) PC (SEBS) cores encapsulated by SEBS (PC), which require more (less) energy to achieve fracture. The correlation between the mechanical and morphological properties proves that decreasing core diameter and shell thickness has positive effects on the impact strength but decreases the Young’s modulus.  相似文献   

18.
The crystallization and transition temperatures of poly(ethylene terephthalate) (PET) in blends with polycarbonate (PC) is considered using thermal analysis. Additives typically used in commercial polyester blends, transesterification inhibitor and antioxidant, are found to enhance the crystallization rate of PET. Differential scanning calorimetry (DSC) reveals two glass transition temperatures in PET/PC blends, consistent with an immiscible blend. Optical microscopy observations are also consistent with an immiscible blend. Small shifts observed in the Tg of each component may be due to interactions between the phases. The degree of crystallinity of PET in PET/PC blends is significantly depressed for high PC contents. Also, in blends with PC content greater than 60 wt %, two distinct crystallization exotherms are observed in dynamic crystallization from the melt. The isothermal crystallization kinetics of PET, PET modified with blend additives, and PET in PET/PC blends have been evaluated using DSC and the data analyzed using the Avrami model. The crystallization of PET in these systems is found to deviate from the Avrami prediction in the later stages of crystallization. Isothermal crystallization data are found to superimpose when plotted as a function of time divided by crystallization half-time. A weighted series Avrami model is found to describe the crystallization of PET and PET/PC blends during all stages of crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
聚烯烃改性PET的研究   总被引:8,自引:2,他引:8  
通过PET与PP、HDPE、EPDM挤出共混,注射模塑制得试样。经DTA、SEM和力学性能测试,表征了共混体系的热行为、结构形态和力学性能。结果表明,在PET/PP(EPDM、HDPE)共混体系中,加入少量的PP-g-MI(EPDM-g-MAH、PE-g-MI),可较好地改善PEt与PP(EPDM、HDPE)之间的相容性,使分散相在PET基体连续相中分散均匀,分散相尺寸减小,增加了两相间界面的粘结力;同时对PET的结晶有较强的促进作用,使其冷结晶温度降低,改善了PET的加工性能;并且能大幅度提高共混物的冲击强度。  相似文献   

20.
Melt blends of polycarbonate and poly(ethylene terephthalate) were formed by continuous extrusion and injection-molded into bars for mechanical testing. Thermal analysis was used to ascertain transitional behavior and the level of PET crystallinity at various points in the fabrication and testing process. The mechanical properties showed little departure from additivity except for the percent elongation at break which was substantially larger for certain blends than expected. Glass transition behavior suggests two amorphous phases for PC rich mixtures and only one mixed phase in the PET rich region. Crystallizability of the PET after the blend was held for prolonged times in the melt state suggests that interchange reactions do not occur to any great extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号