首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the robust trajectory tracking problem for a robot manipulator in the presence of uncertainties and disturbances. First, a neural network-based sliding mode adaptive control (NNSMAC), which is a combination of sliding mode technique, neural network (NN) approximation and adaptive technique, is designed to ensure trajectory tracking by the robot manipulator. It is shown using the Lyapunov theory that the tracking error asymptotically converge to zero. However, the assumption on the availability of the robot manipulator dynamics is not always practical. So, an NN-based adaptive observer is designed to estimate the velocities of the links. Next, based on the observer, a neural network-based sliding mode adaptive output feedback control (NNSMAOFC) is designed. Then it is shown by the Lyapunov theory that the trajectory tracking errors, the observer estimation errors asymptotically converge to zero. The effectiveness of the designed NNSMAC, the NN-based adaptive observer and the NNSMAOFC is illustrated by simulations.  相似文献   

2.
This article presents two new adaptive schemes for the motion control of robot manipulators. The proposed controllers are very general and computationally efficient because they do not require knowledge of either the mathematical model or the parameter values of the manipulator dynamics, and are implemented without calculation of the robot inverse dynamics or inverse kinematic transformation. It is shown that the control strategies are globally stable in the presence of bounded disturbances, and that in the absence of disturbances the ultimate bound on the size of the tracking errors can be made arbitrarily small. Computer simulation results are given for a PUMA 560 manipulator, and demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed controllers. Experimental results are presented for an IMI Zebra Zero manipulator and confirm that the control schemes provide a simple and effective means of obtaining high-performance trajectory tracking. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
针对机器人系统在仅有位置传感、驱动器饱和、存在建模不确定性及干扰等条件下的轨迹跟踪控制问题,提出了一种新的自适应PID控制方案。采用高精度滤波器估计机器人关节速度,采用带饱和函数的控制器限制输出力矩,采用自适应PID控制器补偿建模不确定性和干扰。通过Lyapunov直接法,证明系统的稳定性。最后以两关节机器人为例,给出仿真实验结果,验证了算法的有效性。  相似文献   

4.
This article presents two new adaptive schemes for motion control of robot manipulators. The first controller possesses a partially decentralized structure in which the control input for each task variable is computed based on information concerning only that variable and on two “scaling factors” that depend on the other task variables. The need for these scaling factors is eliminated in the second controller by exploiting the underlying topology of the robot configuration space, and this refinement permits the development of a completely decentralized adaptive control strategy. The proposed controllers are computationally efficient, do not require knowledge of either the mathematical model or the parameter values of the robot dynamics, and are shown to be globally stable in the presence of bounded disturbances. Furthermore, the control strategies are general and can be implemented for either position regulation or trajectory tracking in joint-space or task-space. Computer simulation results are given for a PUMA 762 manipulator, and these demonstrate that accurate and robust trajectory tracking is achievable using the proposed controllers. Experimental results are presented for a PUMA 560 manipulator and confirm that the proposed schemes provide simple and effective real-time controllers for accomplishing high-performance trajectory tracking. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.  相似文献   

6.
This paper considers the trajectory tracking problem for uncertain robot manipulators and proposes two adaptive controllers as solutions to this problem. The first controller is derived under the assumption that the manipulator state is measurable, while the second strategy is developed for those applications in which only position measurements are available. The adaptive schemes are very general and computationally efficient since they do not require knowledge of either the mathematical model or the parameter values of the manipulator dynamics, and are implemented without calculation of the robot inverse dynamics or inverse kinematic transformation. It is shown that the control strategies ensure uniform boundedness of all signals in the presence of bounded disturbances, and that the ultimate size of the tracking errors can be made arbitrarily small. Experimental results are presented for a PUMA 560 manipulator and demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed controllers.  相似文献   

7.
This paper presents an adaptive scheme for the motion control of kinematically redundant manipulators. The proposed controller is very general and computationally efficient since it does not require knowledge of either the mathematical model or the parameter values of the robot dynamics, and is implemented without calculation of the robot inverse dynamics or inverse kinematic transformation. It is shown that the control strategy is globally stable in the presence of bounded disturbances, and that in the absence of disturbances the size of the residual tracking errors can be made arbitrarily small. The performance of the controller is illustrated through computer simulations with a nine degree-of-freedom (DOF) compound manipulator consisting of a relatively small, fast six-DOF manipulator mounted on a large three-DOF positioning device. These simulations demonstrate that the proposed scheme provides accurate and robust trajectory tracking and, moreover, permits the available redundancy to be utilized so that a high bandwidth response can be achieved over a large workspace.  相似文献   

8.
This article presents a new class of adaptive schemes for the motion control of robot manipulators. The proposed controllers are very general and computationally efficient because they do not require knowledge of either the mathematical model or the parameter values of the manipulator dynamics, and are implemented without calculation of the robot inverse dynamics or inverse kinematic transformations. It is shown that the control strategies are globally uniformly bounded in the presence of bounded disturbances, and that in the absence of disturbances the ultimate bound on the size of the tracking errors can be made arbitrarily small. Computer simulation results are given for a PUMA 560 manipulator, and demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed controllers. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
机械手的模糊逆模型鲁棒控制   总被引:3,自引:0,他引:3  
提出一种基于模糊聚类和滑动模控制的模糊逆模型控制方法,并将其应用于动力学 方程未知的机械手轨迹控制.首先,采用C均值聚类算法构造两关节机械手的高木-关野 (T-S)模糊模型,并由此构造模糊系统的逆模型.然后,在提出的模糊逆模型控制结构中, 离散时间滑动模控制和时延控制(TDC)用于补偿模糊建模误差和外扰动,保证系统的全局 稳定性并改进其动态和稳态性能.系统的稳定性和轨迹误差的收敛性可以通过稳定性定理来 证明.最后,以两关节机械手的轨迹跟随控制为例,揭示了该设计方法的控制性能.  相似文献   

10.
针对机器人存在的参数不确定性和外扰的问题,提出了一种基于期望轨迹补偿和自适应控制的方法,在传统自适应控制方法的基础上,结合变结构控制方法,设计了一种新的控制策略.该方法采用期望轨迹补偿,离线计算回归矩阵,可以有效节约控制系统在线计算的时间,实时性好,并利用变结构思想补偿非线性摩擦和外界干扰,利用lyapunov直接法分...  相似文献   

11.
This study addresses the trajectory tracking control of a 6-DOF (degrees of freedom) hydraulic parallel robot manipulator with uncertain load disturbances. As load disturbances are the main external disturbances of the parallel robot manipulators and have a significant impact on system tracking performance, many researchers have been devoted to synthesize advanced control methods for improving the system robustness under the assumption that load disturbances are bounded. However, load disturbances are uncertain and vary in a large range in real situation happening in most hydraulic parallel robot manipulators, which is opposed to the assumption. In this paper, the load disturbances are directly measured by force sensors. Then a sliding mode control with discontinuous projection-based adaptation laws is proposed to improve the tracking performance of the parallel robot manipulator. Simulations and experiments with typical desired trajectory are presented, and the results show that good tracking performance is achieved in the presence of uncertain load disturbances.  相似文献   

12.
An asymptotically stable decentralized adaptive control scheme is presented to enable accurate trajectory tracking without requiring specific knowledge about the robot dynamics. The scheme is based on expressing the robot dynamics as the product of individual joint quantities, and bounds on certain robot parameters. Parameter adaptation laws are derived using the Lyapunov theory, and asymptotic stability of tracking errors, and boundedness of parameter estimates are established. The control system is shown to be robust to torque disturbances affecting the system and to a class of unmodeled dynamics. The structure of the controller and the performance of the closed-loop system are analyzed. Simulations results using the complete dynamic model of a six degree of freedom industrial robot are presented to demonstrate the excellent tracking performance of the proposed adaptive control scheme. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Mutual Synchronization of Multiple Robot Manipulators with Unknown Dynamics   总被引:1,自引:0,他引:1  
In this paper, we investigate the mutual synchronization control problem of multiple robot manipulators in the case that the desired trajectory is only available to a portion of the team members, and the dynamics and the external disturbances of the manipulators are unknown. Treating the weighted average of the outputs of the neighbors as the reference trajectory, an adaptive neural network (NN) tracking control is designed for each manipulator. Based on the Lyapunov analysis, rigid mathematical proof is provided for the proposed algorithm for both state feedback and output feedback cases. It is shown that, under the proposed adaptive NN control, the tracking error of each manipulator converges to an adjustable neighborhood of the origin. Simulations are provided to demonstrate the effectiveness of the proposed approach.  相似文献   

14.
This paper describes a quadcopter manipulator system, an aerial robot with an extended workspace, its controller design, and experimental validation. The aerial robot is based on a quadcopter with a three degree of freedom robotic arm connected to the base of the vehicle. The work aims to create a stable airborne robot with a robotic arm that can work above and below the airframe, regardless of where the arm is attached. Integrating a robotic arm into an underactuated, unstable system like a quadcopter can enhance the vehicle's functionality while increasing instability. To execute a mission with accuracy and reliability during a real-time task, the system must overcome the inter-coupling effects and external disturbances. This work presents a novel design for a robust adaptive feedback linearization controller with a model reference adaptive controller and hardware implementation of the quadcopter manipulator system with plant uncertainties. The closed-loop stability of the aerial robot and the tracking error convergence with the robust controller is analyzed using Lyapunov stability analysis. The quadcopter manipulator system is custom developed in the lab with an off-the-shelf quadcopter and a 3D-printed robotic arm. The robotic system architecture is implemented using a Jetson Nano companion computer for autonomous onboard flight. Experiments were conducted on quadcopter manipulator system to evaluate the autonomous aerial robot's stability and trajectory tracking with the proposed controller.  相似文献   

15.
This article presents two new adaptive strategies for motion control of uncertain rigid-link, electrically driven manipulators. The first controller is a position regulation scheme that ensures (semiglobal) asymptotic convergence of the position error if no external disturbances are present, and convergence to an arbitrarily small neighborhood of zero in the presence of bounded disturbances. It is shown that the regulation scheme can be modified to provide accurate trajectory tracking control through the introduction of adaptive feedforward elements in the control law; this second control strategy retains the simple structure of the first controller and ensures arbitrarily accurate tracking in the presence of bounded disturbances. Each of the adaptive schemes is computationally efficient and requires virtually no information concerning either the manipulator or actuator models. Computer simulation results are given for a PUMA 560 manipulator and demonstrate that accurate and robust motion control can be achieved by using the proposed controllers. Experimental results are presented for an IMI Zebra Zero manipulator and confirm that the proposed approach provides a simple and effective means of obtaining high performance motion control. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
具有柔性关节的轻型机械臂因其自重轻、响应迅速、操作灵活等优点,取得了广泛应用;针对具有柔性关节的机械臂系统的关节空间轨迹跟踪控制系统动力学参数不精确的问题,提出一种结合滑模变结构设计的自适应控制器算法;通过自适应控制的思想对系统动力学参数进行在线辨识,并采用Lyapunov方法证明了闭环系统的稳定性;仿真结果表明,该控制策略保证了机械臂系统对期望轨迹的快速跟踪,具有良好的跟踪精度,系统具有稳定性。  相似文献   

17.
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.  相似文献   

18.
Many adaptive robot controllers have been proposed in the literature to solve manipulator trajectory tracking problems for high-speed operations in the presence of parameter uncertainties. However, most of these controllers stem from the applications of the existing adaptive control theory, which is traditionally focused on tracking slowly time-varying parameters. In fact, manipulator dynamics have fast transient processes for high-speed operations and load changes are abrupt. These observations motivate the present research to incorporate change detection techniques into self-tuning schemes for tracking abrupt load variations and achieving fast load adaptation. To this end, a robustly global stabilizing controller for a robot model with parametric and non-parametric uncertainies is developed based on the Lyapunov second method, and it is then made adaptive via the self-tuning regulator concept. The two-model approach to online change detection in load is used and the estimation algorithm is reinitialized once load changes are detected. This allows a much faster adaptive identification of load parameters than the ordinary forgetting factor approach. Simulation results demonstrate that the proposed controller achieves better tracking accuracy than the existing adaptive and non-adaptive controllers.  相似文献   

19.
This article presents a new approach to trajectory tracking control of uncertain rigid manipulators using only position measurements. The proposed control strategy is an adaptive scheme that is very general and computationally efficient, requires virtually no information regarding the manipulator dynamic model, and is implementable without calculation of the robot inverse dynamics or inverse kinematic transformations. It is shown that the controller ensures semiglobal uniform boundedness of all signals in the presence of bounded disturbances, and that the ultimate size of the tracking errors can be made arbitrarily small. Additionally, it is demonstrated that the proposed strategy can be used as the basis for developing controllers for “cascaded” robotic systems, such as manipulators with significant actuator dynamics or joint flexibility. The efficacy of this approach to manipulator control is illustrated through both computer simulations and hardware experiments. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
This paper presents a unified motion controller for mobile manipulators which not only solves the problems of point stabilization and trajectory tracking but also the path following problem. The control problem is solved based on the kinematic model of the robot. Then, a dynamic compensation is considered based on a dynamic model with inputs being the reference velocities to the mobile platform and the manipulator joints. An adaptive controller for on-line updating the robot dynamics is also proposed. Stability and robustness of the complete control system are proved through the Lyapunov method. The performance of the proposed controller is shown through real experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号