共查询到20条相似文献,搜索用时 78 毫秒
1.
网络是表达对象之间复杂联系的重要形式,广泛存在。而链路预测作为网络分析的重要方法,具有很大的研究意义和应用价值。传统的链路预测算法普遍是基于邻接矩阵的稀疏表示方案而设计,计算效率低且扩展性差。首先引入网络表示学习的概念,创新性地提出基于几何布朗运动的随机游走算法GbmRw,然后进一步设计出网络表示学习算法GBMLA,实现更具区分能力与表达能力的网络表示,最后以节点表示向量的欧式距离来表征节点之间的相似性,从而预测其链路存在的可能性。不同领域的多个网络中进行反复实验的结果表明,该算法较之于基于原始网络设计的传统算法,预测效果得到了明显的提升,也进一步肯定了网络表示学习对于链路预测工作的重要意义。 相似文献
2.
现有的基于随机游走链路预测指标在无权网络上的转移过程存在较强随机性,没有考虑在网络结构上不同邻居节点间的相似性对转移概率的作用。针对此问题,提出一种基于网络表示学习与随机游走的链路预测算法。首先,通过基于深度学习的网络表示学习算法——DeepWalk学习网络节点的潜在结构特征,将网络中的各节点表征到低维向量空间;然后,在重启随机游走(RWR)和局部随机游走(LRW)算法的随机游走过程中融合各邻居节点在向量空间上的相似性,重新定义出邻居节点间的转移概率;最后,在5个真实数据集上进行大量实验验证。实验结果表明:相比8种具有代表性的基于网络结构的链路预测基准算法,所提算法链路预测结果的AUC值均有提升,最高达3.34%。 相似文献
3.
现有的基于Word2vec的网络表示学习(NRL)算法使用随机游走(RW)来生成节点序列,针对随机游走倾向于选择具有较大度的节点,生成的节点序列不能很好地反映网络结构信息,从而影响表示学习性能的问题,提出了基于改进随机游走的网络表示学习算法。首先,使用RLP-MHRW算法生成节点序列,它在生成节点序列时不会偏向大度节点,得到的节点序列能更好地反映网络结构信息;然后,将节点序列投入到Skip-gram模型得到节点表示向量;最后,利用链路预测任务来测度表示学习性能。在4个真实网络数据集上进行了实验。在论文合作网络arXiv ASTRO-PH上与LINE和node2vec算法相比,链路预测的AUC值分别提升了8.9%和3.5%,其他数据集上也均有提升。实验结果表明,RLP-MHRW能有效提高基于Word2vec的网络表示学习算法的性能。 相似文献
4.
随着信息技术的广泛应用,网络在人们日常的生活中变得无处不在。网络表示学习算法是最近研究网络的一个热门领域,它旨在保留网络拓扑结构信息的同时,将网络映射到一个潜在、低维度的向量空间。网络Motif,在网络分析中具有重要的意义,然而之前提出的网络表示学习算法绝大多数只考虑了节点的邻域属性或邻近性,而忽略了节点的Motif结构信息。因此,基于上述考虑,提出了算法"保持Motif结构的网络表示学习",使得在学习网络节点向量表示时能够更加侧重地考虑网络Motif的结构。算法首先计算出基于Motif的网络权重矩阵;接着求得网络中每个节点的基于Motif的个性化PageRank预估值;最后进行MotifWalk得到游走路径,从而能够运用Word2Vec模型来得到网络的向量表示。通过与三个经典的网络表示算法比较,发现在稠密以及Motif结构丰富的网络中,提出的算法表现得更好。 相似文献
5.
根据网络结构中的连接关系得到节点的向量表示,进而将节点的向量表示应用于推荐算法可有效提升其建模能力。针对推荐系统中的同质网络,提出结合随机游走的网络表示学习推荐算法。以DeepWalk算法为基础,在随机游走过程中根据节点重要性设定节点游走序列数,并设置终止概率以控制游走长度优化采样结果,在网络表示学习过程中将SkipGram模型融合节点属性信息,同时考虑上下文节点离中心节点的距离获得更准确的推荐结果。实验结果表明,该算法相比DeepWalk、Node2vec等算法具有更高的推荐准确度,并且较好地解决了冷启动问题。 相似文献
6.
7.
8.
现有的网络表示学习算法主要是针对同质网络或异质网络设计的,而忽略了在推荐系统、搜索引擎和问答系统等领域出现的二分网络的特殊特征以及这类网络所携带着的非常丰富的属性信息.为了解决上述问题,提出了一种结合属性信息的二分网络表示学习方法(ABNE).该方法首先将连边分解成邻居节点间的间接关系集,嵌入显式关系,接着通过余弦相似... 相似文献
10.
由于具有巨大的流通市值、庞大的用户量和账户匿名性的特点,区块链交易频繁受到盗窃、庞氏骗局、欺诈等异常行为的威胁。针对区块链异常交易,提出一种网络表示学习模型DeepWalk-Ba用于特征提取,以比特币为例,对区块链交易的网络结构和属性进行学习,从交易的邻域结构中挖掘隐含信息作为节点特征,再使用5种有监督和1种无监督的机器学习算法进行异常检测。实验表明,有监督模型随机森林表现最好,达到了99.3%的精确率和86.4%的召回率,比使用传统的特征提取方法的异常检测模型具有更好的检测效果。 相似文献
11.
近年来,图嵌入已经成为图神经网络领域研究的热点。图嵌入作为图任务分析的一种重要手段,将图的高维非欧信息编码到低维向量空间中,从而提升下游任务的性能和效率。为了及时掌握当前基于随机游走的图嵌入方法的研究现状,通过归纳与整理,对现有的经典模型进行介绍与分类,主要分为基于经典随机游走的模型和基于属性游走的模型;然后对每一种模型解决的问题、算法思想、模型策略、优缺点和应用场景进行了详细的归纳与分析,并在几种常见的数据集上评估了部分模型的性能。通过研究发现,当前的基于随机游走的图嵌入亟待解决四个方面的问题:属性选择、可扩展性、嵌入维度选择和可解释性,针对这些问题,图嵌入需要建立一致的理论框架,为后面的研究提供可参考的标准。 相似文献
12.
网络嵌入是将高维网络映射到低维向量空间的一种表示学习方法.目前,人们对动态同质网络嵌入和静态异质信息网络嵌入已经开展了一些研究,但动态异质网络上的嵌入研究仍然较少.如果直接应用静态网络嵌入或动态同质网络嵌入方法来解决动态异质网络嵌入问题,会由于忽略网络的动态或异质特性而导致严重的信息丢失.因此,提出一种基于时间和类别约束随机游走的动态异质网络嵌入方法TNDE.该方法引入类别约束,能够解决动态异质网络中由于异质特性带来的语义信息保留问题.不同于其他动态网络中的时序随机游走,该方法采用非递减的时间约束来增量式地进行随机游走,能够解决网络同时具备动态和异质特性而引入的强语义局部结构上的边时间戳一致的挑战,避免游走时出现时间戳陷入的问题.通过对实时变化的增量游走和嵌入学习,TNDE提供了一种高效的在线表示学习算法.在3个真实数据集上的实验结果表明:该方法在不同特性的网络中具有良好的通用性.与目前最先进方法相比,能够得到下游链路预测和节点分类任务中2.4%~92.7%的准确度提升,显著提高了嵌入质量,并在保证良好嵌入质量的前提下,缩短算法运行时间12.5%~99.91%. 相似文献
13.
马煜 《计算机测量与控制》2019,27(7):236-241
在共享底层上嵌入多个虚拟网络(VN)是云计算平台和大规模可切片网络测试平台的一个挑战性问题。本文利用马尔可夫随机游走模型,根据网络节点的资源和拓扑属性对其进行排序,这种新的拓扑感知节点排序方法可反映节点的相对重要性。利用节点排序设计了两种VN嵌入算法:RW-MaxMatch和RW-BFS。仿真实验表明:与现有的嵌入算法相比,拓扑感知节点排序具有较好的资源度量,并且所提出的基于RW的算法增加了长期平均收益和接受率。 相似文献
14.
图分析用于深入挖掘图数据的内在特征,然而图作为非欧几里德数据,传统的数据分析方法普遍存在较高的计算量和空间开销。图嵌入是一种解决图分析问题的有效方法,其将原始图数据转换到低维空间并保留关键信息,从而提升节点分类、链接预测、节点聚类等下游任务的性能。与以往的研究不同,同时对静态图和动态图嵌入文献进行全面回顾,提出一种静态图嵌入和动态图嵌入通用分类方法,即基于矩阵分解的图嵌入、基于随机游走的图嵌入、基于自编码器的图嵌入、基于图神经网络(GNN)的图嵌入和基于其他方法的图嵌入。其次,对静态图和动态图方法的理论相关性进行分析,对模型核心策略、下游任务和数据集进行全面总结。最后,提出了四个图嵌入的潜在研究方向。 相似文献
15.
由于异构信息网络具有丰富的语义信息而在推荐任务中得到广泛应用.传统的面向异构信息网络的推荐方法忽略了网络中关联关系的异质性,以及不同关联类型之间的相互影响.本文提出了一种基于多视角嵌入融合的推荐模型,分别从同质关联视角和异质关联视角来挖掘异构信息网络的深层潜在特征并加以融合,有效地保证了推荐结果的准确性.针对同质关联视角,提出了一种基于图卷积神经网络的嵌入融合方法,通过对同质关联作用下节点邻域信息的轻量式卷积,实现节点嵌入的局部融合.针对异质关联视角,提出了一种基于注意力的嵌入融合方法,利用注意力机制来区分不同关联类型对节点嵌入的影响,实现节点嵌入的全局融合.通过实验验证了本文所提出的关键技术的可行性和有效性. 相似文献
16.
实体对齐旨在找到位于不同知识图谱中的等效实体,是实现知识融合的重要步骤.当前主流的方法是基于图神经网络的实体对齐方法,这些方法往往过于依赖图的结构信息,导致在特定图结构上训练得到的模型不能拓展应用于其他图结构中.同时,大多数方法未能充分利用辅助信息,例如属性信息.为此,本文提出了一种基于图注意力网络和属性嵌入的实体对齐方法,该方法使用图注意力网络对不同的知识图谱进行编码,引入注意力机制从实体应用到属性,在对齐阶段将结构嵌入和属性嵌入进行结合实现实体对齐效果的提升.在现实世界的3个真实数据集上对本文模型进行了验证,实验结果表明提出的方法在很大程度上优于基准的实体对齐方法. 相似文献
17.
异质网络嵌入是将异质网络中丰富的结构和语义信息嵌入到低维的节点表示中.图卷积网络是处理网络数据的一种有效方法,当前也被用于研究异质网络的多类型节点和多维关系的表示问题,现有的图卷积网络模型主要采用元路径来表示不同类型节点间的一种语义关系.然而,孤立的单条元路径无法准确地反映节点间的复杂语义,即不能充分利用节点间存在的多种高阶间接语义关系.针对上述问题,提出了一种基于元图卷积的异质网络嵌入学习算法MGCN(meta-graph convolutional network),包括基于元图的异构邻接矩阵计算以及学习节点的嵌入表示2个阶段,基于元图的异构邻接矩阵设计了融合多条元路径上的不同语义的计算方法,能够挖掘节点间的高阶间接关系,通过异构邻接矩阵的计算,能够聚合节点邻域特征为统一模式,此种卷积学习降低了图卷积方法的嵌入维数,从而减少了计算时间.在2个公开的异质网络数据集上进行社会计算基础研究任务的实验表明,MGCN在节点分类、聚类任务上比基线模型有更好的性能且需更少的训练时间. 相似文献
18.
特征提取对于网络分析任务而言是至关重要的,而网络嵌入学习的目的则是根据网络的结构和语义信息自动化构建节点或边的特征。现有的方法将网络嵌入分解为网络数据挖掘和数据降维两个独立的过程,因而无法很好地在潜在空间中对节点的分布进行建模描述。因此,提出了一种基于高阶混合投影估计的网络嵌入方法,该方法借鉴谱分解的思想,利用线性投影算子将网络从高维结构空间映射至低维特征空间,然后利用混合概率模型对节点的分布进行建模以维持网络的社区结构性质。此外,该方法还融入了局部节点相似性来防止发生过拟合现象。最后,为了验证该方法的有效性和鲁棒性,在四个真实的网络数据集之上和现有的网络嵌入算法进行了对比实验,在链路预测任务中,该方法分别将Micro-F1和Macro-F1指标的基准线平均提升了3.97%和2.23%,在节点分类任务中,该方法将AUC值的基准线平均提升了10.43%。 相似文献
19.
Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users’ normal and abnormal behaviors. Based on a wide investigation into the stat... 相似文献
20.
近年来,虚拟网络映射技术作为网络虚拟化的关键技术,成为学术界与工业界研究的重点之一。针对安全虚拟网络映射中因节点安全感知不全面、匹配不合理导致的映射性能较低问题,文章提出了一种基于熵权折衷排序法(VIKOR)的安全虚拟网络映射算法。该算法首先将安全虚拟网络映射问题构建为混合整数线性规划模型,设计了节点安全优先度指标,实现了虚拟网络节点与底层网络节点安全联合感知;其次在映射过程中综合考虑节点资源属性、拓扑属性和安全属性,采用熵权VIKOR进行节点排序;最后按照节点排序结果依次进行映射,其中链路映射采用k最短路径算法。仿真结果表明,在满足节点各项约束的前提下,文章算法提高了虚拟网络映射成功率和收益开销比。 相似文献