首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
Polypropylene (PP)‐based nanocomposites compounded by a twin‐screw extruder and injection molded into plates those were then joined by linear vibration welding. The mechanical performances of the welds and bulk materials were examined. While the incorporation of rigid particles slightly improves the impact strength of the bulk PP, the mechanical properties of the welds decrease with increasing nanoparticle contents. The best weld quality is obtained at low weld pressure without nanoparticles. The fracture surfaces and microstructure of the welds showed that the reduced weld quality is caused by the orientation of nanofillers parallel to the weld plane, the destruction of interphase between fillers and matrix, and the reduction of molten‐film thickness by incorporation of nanoparticles. POLYM. ENG. SCI., 55:243–250, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters in vibration welding are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time. How these parameters affect weld quality, the conditions that result in the best welds, the weldability of dissimilar plastics, and the effect of fillers such as glass are of interest. To address these issues, a research vibration welding machine in which all the parameters can be independently and accurately controlled and monitored was designed and fabricated. The phenomenology of welding, as determined by experiments on the four thermoplastics polycarbonate, poly (butylene terephthalate), polyetherimide, and modified poly (phenylene oxide), is described.  相似文献   

3.
介绍了奥氏体不锈钢薄壁压力容器焊接过程中容易产生的问题及应对措施。通过实例,介绍了奥氏体不锈钢薄壁压力容器焊缝的返修方法和工艺。结果表明,焊缝返修完全可行,产品质量符合相关标准要求。  相似文献   

4.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time or weld penetration.; The effects of these parameters on weld quality were systematically studied by first butt welding thermoplastic specimens under controlled conditions, over a wide range of process parameters, and by then determining the strengths and ductilities of these welds by tensile tests. The three thermoplastics investigated are poly (butylene terephthalate), polyetherimide, and modified polyphenylene oxide. Changes in the weld pressure are shown to have opposite effects on the strengths of polyetherimide and modified polyphenylene oxide welds; Also, the weld frequency is shown to have a significant effect on the weldability of polyetherimide. The weldability data for these three thermoplastics are compared with data for polycarbonate. Under the right conditions, the strengths of butt welds in these materials are shown to equal the strength of the virgin polymer.  相似文献   

5.
The strength of vibration welds of thermoplastics is governed by the weld zone microstructure, which in turn, is closely tied to the welding process variables, such as the thickness of the weld melt film and the temperature profiles therein. The mathematical model described in this report is aimed at describing the role of the rheology of the melt—specifically the magnitude and shear rate dependence of the melt viscosity—in governing the melt film variables during the steady state penetration phase (Phase III) of vibration welding. The steady state momentum balance and heat transfer within the melt film are solved by using the power law model for viscosity. Closed‐form analytical expressions are obtained for estimating the melt film thickness, the shear rates, and the temperature field within the film. This model has been used to estimate weld zone variables for four different polymers displaying a wide range of viscosities and shear thinning behaviors. POLYM. ENG. SCI., 54:499–511, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time or weld penetration; The effects of these parameters on weld quality were systematically studied by first butt-welding polycarbonate specimens under controlled conditions over a wide range of process parameters, and by then determining the strengths and ductilities of these welds by tensile tests, A significant result is the apparent existence of a weld-penetration threshold above which high weld strengths are attained, but below which the strength drops off. Under the right conditions, the strengths of polycarbonate butt welds are shown to equal the strength of the virgin polymer.  相似文献   

7.
Because of very different heating rates in hot‐tool and vibration welding, and the higher weld pressures used in vibration welding inducing more squeeze flow, the weld zones in these two processes see very different flows and cooling rates, resulting in different morphologies. The weld morphologies of bisphenol‐A polycarbonate (PC) and poly(butylene terephthalate) (PBT) for these two processes are discussed in relation to these differences. The thickness of the heat‐affected zone (HAZ) in hot‐tool welds increases with the melt time; this zone is thicker than in vibration welds. The HAZ thickness in hot‐tool welds increases from the center toward the edges. The HAZ thickness is more uniform in vibration welds. Hot‐tool welds of PC have large numbers of bubbles around the central plane; the bubble size increases from the center to the edges. PC vibration welds do not have bubbles except near the edges. Both hot‐tool and vibration welds of PBT do not have bubbles. The morphology of the HAZ in PBT is very different in hot‐tool and vibration welds. In hot‐tool welds, the resolidified material consists of a sandwich structure in which two thin layers with very small crystallites surround a thicker central layer in which the spherulites are almost as large as in the original molded material. In vibration welds, the HAZ has large crystallinity gradients across the weld zone as well as squeeze‐flow induced distortion of the small spherulites.  相似文献   

8.
研究了玻璃纤维含量、苯胺黑色母含量、树脂相对黏度、焊接工艺(深度、振幅、压力)等因素对玻璃纤维增强尼龙6(PA6)焊接强度的影响。结果表明,玻璃纤维含量为30%的玻璃纤维增强PA6具有最大的焊接强度,为58.0 MPa;通过差示扫描量热分析发现,加入3%的苯胺黑色母能使玻璃纤维增强PA6的结晶温度从191.8℃降至173.7℃,但对焊接强度影响较小;随着树脂相对黏度从2.0提高到3.4,玻璃纤维增强PA6的结晶度从27.1%下降至16.2%,焊接强度略有提升;焊接工艺参数对玻璃纤维增强PA6的焊接强度影响较大的是振幅与焊接压力,振幅为0.4 mm时,焊接不充分,焊接强度仅为38.8 MPa,振幅为0.7 mm时,能充分焊接,焊接强度增至55.5 MPa,随着焊接压力从3.5 MPa提升到9.0 MPa,焊接强度从56.3 MPa下降至43.3 MPa。  相似文献   

9.
Ultrasonic welding of thermoplastic composites has become an important process in industry because of its relatively low cost and resultant high quality joints. An experimental study, based on the Taguchi orthogonal array design, is reported on the effect of different processing factors on the joint strength of ultrasonically welded composites, including weld time, weld pressure, amplitude of vibration, hold time, hold pressure, and geometry of energy director. Three materials were used in the study: virgin polypropylene, and 10% and 30% glass‐fiber filled polypropylene composites. Experiments were carried out on a 2000‐Watt ultrasonic welding unit. After welding, the joint strength of the composites was determined by a tensile tester. For the factors selected in the main experiments, weld time, geometry of energy director and amplitude of vibration were found to be the principal factors affecting the joint property of ultrasonically welded thermoplastic composites. Glass‐fiber filled polymers required less energy for successful welding than the non‐filled polymer. The joint strength of welded parts increased with the fiber content in the composites. In addition, a triangular energy director was found to weld parts of the highest strength for virgin polypropylene and 10% glass‐fiber filled polypropylene composites, while a semi‐circular energy director was found to weld the highest strength parts for 30% glass‐fiber filled composites.  相似文献   

10.
Results from different experiments on friction welding are used to characterize the behavior of polyamide over a wide range of welding conditions. Several types and grades of polyamide were joined using the vibration and spin welding processes. The quality of the welds was evaluated by short time tensile tests and microscopy. In addition to the geometry of the parts being joined, the process parameters and the material were found to affect the quality of the weld, so that associated with each application is a different set of optimum welding parameters.  相似文献   

11.
In vibration welding of thermoplastics, frictional heat generated by vibrating two parts under pressure, along their common interface, is used to effect welds. In the normal, well-understood mode, the vibratory motion is along the weld seam, which is at right angles to the thickness direction for straight boundaries. But in many applications, such as in the welding of closed seams of box-like parts, this vibratory motion occurs in the part-thickness direction, so that a portion of the molten layer along the seam is exposed to the ambient air during each vibratory cycle. The resulting reduction in temperature can affect weld quality. The process phenomenology and the weld strengths of such cross-thickness vibration-welded butt joints are investigated for four neat resins. Weld amplitudes and weld pressures are shown to affect the strengths of 120-Hz welds differently. It is shown that strengths on the order of the strengths of the neat resins can be achieved in 250-Hz butt welds.  相似文献   

12.
Thermoplastics reinforced with random glass mat have high strength and stiffness; the fibers dominate the mechanical behavior of these composites. The results of this investigation have shown that fibers are ineffective for reinforcing hot-tool and vibration welded butt welds. The maximum weld strengths attained with GMT are comparable to the strengths of good welds of the unfilled material. The optimum hot-tool welding parameters for the reinforced materials are different from those for the unfilled material. Unfilled polypropylene is easier to weld than unfilled polyamide. This characteristic is also true of the reinforced materials. In vibration welding, high welding pressures and high amplitudes result in lower mechanical properties. The optimum penetration depends on the fiber content of the bulk material. This penetration dependence is different from that for unfilled thermoplastic, for which the mechanical properties are independent of the penetration once a steady state has been attained.  相似文献   

13.
Mechanical and morphological properties of hot gas butt welds on polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) sheets for four different procedures, which are single and double V‐welds with and without a welding shoe, were investigated. Besides, weldabilities of base materials were evaluated by rheological measurements. These revealed that weldabilities of PE and PP sheets were better than that of PVC. Welding energy (Ew), which is transferred onto weld surfaces, was calculated to evaluate weld quality. The results of tensile, impact, and bending tests indicated that the weld strengths of PVC sheets were lower than those of PE and PP sheets. When the welding shoe was used, weld strength increased significantly for each material because of the presence of sufficient welding pressure and the effective heating on surfaces. The best results were attained for the double V‐welds with the welding shoe. Morphology of welded regions was evaluated by polarized light, stereo, and scanning electron microscopy. Polarized light microscopy studies indicated that the heat‐affected zone (HAZ) consisted of welding rod core, molten zone, and deformed spherulitic zone, and the welding interface was indistinguishable from the base material when the welding pressure was enough. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
15.
In far-field ultrasonic welding of plastic parts the distance between the ultrasonic horn and the joint is greater than 6 mm. This study investigated the farfield ultrasonic welding of amorphous (acrylo butadiene styrene and polystyrene) and semicrystalline (polyethylene and polypropylene) polymers. Far-field welding worked well for amorphous polymers. Weld strength improved substantially with increasing amplitude of vibration at the joint interface. Increasing the weld pressure and/or the weld time also resulted in higher weld strengths. Far-field ultrasonic welding was not successful for semicrystalline polymers. The parts melted and deformed at the horn/part interface with little or no melting at the joint interface. A model for wave propagation in viscoelastic materials, which was developed to predict the vibration amplitude experienced at the joint interface, indicates that increasing the length of the samples to a half a wavelength should improve the far-field welding of semicrystalline polymers by maximizing the amplitude of vibration at the joint interface.  相似文献   

16.
The weldability of poly(vinyl chloride) (PVC) is assessed through hot‐tool and 120‐Hz vibration welds. Equivalent strengths have been demonstrated for welds made by both of these welding techniques. For two grades of PVC, relative weld strengths of 85 and 97%, with corresponding failure strains of about 2.5 and 3.3%, respectively, have been demonstrated.  相似文献   

17.
《Polymer Composites》2017,38(3):489-495
A conventional vibration welding process of fiber‐reinforced Polyamide 66 is characterized by a continuous melt flow in the quasi‐steady phase. This squeeze flow leads to a disadvantageous fiber reorientation in the weld zone. The fibers are oriented parallel to the melt flow and thus perpendicular to the common stress direction. This causes relatively low weld strength compared to the strength of the base material. Radiation crosslinking fiber‐reinforced Polyamide 66 with electron beams influences the material characteristics. As a consequence, the resulting energy balance during vibration welding is changed and the squeeze flow is impeded, thus averting the fiber reorientation in the weld seam. The scope of this article is to demonstrate the influence of radiation crosslinking on fiber orientation in vibration welds. Mechanical, calorimetric, rheological, scanning electron microscope, and light microscope investigations serve to highlight the influence of radiation crosslinking on the vibration welds of fiber‐reinforced Polyamide 66. POLYM. COMPOS., 38:489–495, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Ultrasonic welding of oriented polypropylene (OPP) using tie-layer materials has been examined. The thermal cycle at the joint interface was evaluated using a high speed data acquisition system, and concurrent changes in horn displacement (penetration) and the output power were monitored. The model explaining process operation involves four phases, i.e., I–where heating occurs because of the stresses generated in asperities on the contacting surfaces; II–where the whole tie-layer reaches the melting point; III–where the polymer melt is subjected to intense heating from viscous dissipation and is squeezed out; and IV–where the joint cools after welding. In the early stages of ultrasonic welding the heat generated at asperities on the contacting surfaces leads to melting of the tie-layer/oriented polypropylene interface within 50 ms. The tie-layer heats up because of a combination of viscoelastic dissipation and heat conduction from the oriented polypropylene/tie-layer interface, and the rate of temperature rise at the midline of the tie-layer is in the range 200°/s to 400°/s. The reduction in thickness of the test specimens (penetration) is negligible up to the time when the tie-layer melts completely, and then changes rapidly when the melted polymer at the joint interface is squeezed out. The influence of machine parameters (amplitude and contact pressure) and of tie-layer Melt Flow Index is also examined. The total time required for completion of the welding process decreases when the amplitude and applied pressure are increased. The use of low Melt Flow Index tie-layers produces peak temperature as high as 600° at the bondline, and little material is ejected during the ultrasonic welding operation.  相似文献   

19.
Summary In this study, a new type of vibration-assisted injection molding machine was introduced including the principle, structure and application. The responses of cavity pressure to the piston rod vibration amplitude and vibration frequency were discussed in detail. The cavity pressure oscillation frequency was the same with the piston rod frequency. The piston rod vibration frequency had little effect on cavity pressure oscillation amplitude. The cavity pressure oscillation amplitude increased with the increase of piston rod amplitude. The introducing of vibration forces field shortened the filling time, postponed the gate-frozen time and quickened the pressure build up process. More materials could be packed into the mold as the mean cavity pressure was higher which improved the quality of the products.  相似文献   

20.
The thickness of the melt film and the temperature profiles within the melt film in the weld zone are key process variables governing the development of weld‐zone microstructures and the resulting development of weld strengths, during vibration welding of thermoplastics. The mathematical model described in this report is aimed at investigating the role of the rheology of the melt—specifically the magnitude and shear‐rate as well as temperature dependence of the melt viscosity—in governing the process variables such as the molten film thickness and the viscosities, stresses, and the temperatures within the melt film during vibration welding. The analysis is focused on the steady‐state penetration phase (phase III) of vibration welding. The coupled steady‐state momentum balance and heat transfer within the melt film, formulated using the Cross‐WLF (Williams‐Landel‐Ferry) relationship for viscosity, are solved in an iterative finite element framework. The model has been implemented for two different polymers displaying significant differences in viscosities and shear thinning behaviors. An attempt has been made to correlate the trends in the estimated melt film variables with the experimentally measured weld quality. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号