首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical etching, plasma, and ion beam treatments were used to modify the surface of Polytetrafluoroethylene (PTFE). Each surface treatment method developed different surface characteristics. In addition to morphological observation, contact angle, atomic chemical composition, and adhesion strength were measured after treatment with various methods. The different adhesion strengths were explained based on the morphology and atomic chemical composition of the treated PTFE surfaces. The chemical etching showed substantial defluorination, and the adhesion strength was fairly high. The argon plasma treatment introduced very large amounts of oxygen into the surface, and the surface was very smooth with a crater‐like structure. Ion beam treatment induced a form of spires whose dimensions were of several micrometers, depending on the ion dose, whereas the oxygen plasma‐treated samples showed short spires with spherical particles on the top. The spire‐like surface morphology and increased surface area during bonding by ion beam treatment appear to be the reason for a higher adhesion strength than that of the oxygen plasma‐treated PTFE. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1913–1920, 2000  相似文献   

2.
Polytetrafluoroethylene (PTFE) was subjected to 1 MeV electron beam irradiation in air. The thermal stability and the degradation fragments of the irradiated polymer were studied in dependence on the radiation dose up to 4 MGy by thermogravimetric analysis coupled with mass spectrometry. The TGA results confirm the known decrease in the thermal stability of irradiated PTFE with increasing radiation dose. At the thermal degradation, CO2, HF, and fluorocarbon fragments are evolved from the irradiated samples. CO2 and HF are formed by decomposition of peroxy radicals up to 250°C. In addition, low molecular weight fluorocarbons are desorbed from the irradiated PTFE. At temperatures above 300°C, CO2 is formed by the decarboxylation of radiation-induced COOH groups inside the PTFE. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2287–2291, 1997  相似文献   

3.
Sulfonated poly(vinyl fluoride) (PVF-SA) has been made by chemical sulfonation or radiation-induced sulfonation of commercial poly(vinyl fluoride) (PVF) films. The effects of the irradiation treatment and sulfonation on sulfonic acid distribution, crystallinity, state of water, and molecular organization have been examined. The results indicate that proton irradiation and subsequent sulfonation produce a structure that is different from the ones produced by the sulfonation of nonirradiated or electron beam (EB)-irradiated samples. The water uptake is higher in proton-irradiated samples than in the other samples. In addition, the portion of nonfreezing water is highest in proton-irradiated samples. Infrared spectra of the sulfonated samples indicate that a large part of the freezing bound water is associated with the hydrophobic polymer backbone. However, this portion was smaller in the proton-irradiated sample than in the EB-irradiated sample. The proton-irradiated samples had a small-angle X-ray diffraction maximum with a corresponding Bragg spacing of 70 Å, which was taken as evidence for the formation of ion–water cluster domains in the proton-irradiated samples. The ion conductivity was slightly lower in nonirradiated and in EB-irradiated membranes than in the proton-irradiated sulfonated samples in which the highest values were 10–20 mS/cm. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1273–1284, 1999  相似文献   

4.
BACKGROUND: Polytetrafluoroethylene (PTFE) is utilized in many engineering applications, but its poor wettability and adhesion properties with other materials have limited its use. The study reported was aimed at achieving surface modification of PTFE films by radiofrequency NH3 and N2 plasma treatment, followed by graft copolymerization, in order to improve the interfacial adhesion of PTFE and bismaleimide. RESULTS: X‐ray photoelectron spectroscopy results showed that a short‐time plasma treatment had a distinct defluorination effect and led to nitrogen functional group formation. The nitrogen chemical bonding form was different for NH3 and N2 plasma treatments. Under the same experimental conditions, the NH3 plasma exhibited a better etching effect than did the N2 plasma. Contact angle measurement showed an improvement in both surface energy and wettabliity by short‐time plasma treatment. The concentration of the surface‐grafted bismaleimide on PTFE increased after the plasma pretreatment. The lap shear strength between PTFE and bismaleimide increased significantly after surface modification. CONCLUSION: This study found that plasma treatment caused changes in surface chemistry, thus leading to an increase of the wettability of PTFE surfaces. Hence, the adhesion properties of PTFE with bismaleimide were significantly improved. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
A comparative study of the treatment of polytetrafluoroethylene (PTFE) and poly(vinyl fluoride) (PVF) with “Tetra-Etch” has been carried out. The treatment of PTFE resulted in extensive changes in surface chemistry and topography, whereas with PVF there was no significant change in topography and the chemical changes were much less marked. However, treatment of both polymers resulted in large increases in bond strength.

Multiple bonding experiments in which samples are repeatedly fractured and re-bonded were carried out with untreated PTFE and PVF. These resulted in moderate increases in bond strength with PTFE and large increases with PVF. The results indicate that weak boundary layer (WBL) removal is a key element in adhesion improvement by “Tetra-Etch” on PVF. With PTFE, WBL removal also improves adhesion, but the chemical and/or topographical changes introduced by the “Tetra-Etch” are required for optimum performance.  相似文献   

6.
—Surface modification of poly(tetrafluor oethylene) (PTFE) by NH3-plasma treatment was investigated by means of contact angle measurement, XPS, and ATR FT/IR spectroscopy. The modified surfaces were adhesively bonded to nitril rubber. The NH3-plasma irradiation made PTFE surfaces hydrophilic. The contact angle of water on the modified PTFE surface was 16 deg, and the surface energy was 62-63 mJ/m2. The NH3-plasma irradiation improved adhesion between PTFE and nitril rubber using a phenol-type adhesive. The peel strength of the joints reached 8.1 × 103 N/m. Carbonyl and amido groups were created on PTFE surfaces by the NH3-plasma irradiation. The mechanism of the improvement of adhesion by the NH3-plasma irradiation is discussed.  相似文献   

7.
A surface of thin square polytetrafluoroethylene (PTFE) samples (1 × 1 × 0.2 cm3) was irradiated with Ar+ at 1 keV with varying ion dose from 5 × 1014 to 1 × 1017 ions/cm2 with and without an oxygen environment. The irradiated surface of the samples was examined by scanning electron microscopy (SEM) for surface textural changes and x-ray photoelectron spectrometry (XPS) for changes in chemical structure. A wettability test was conducted on the irradiated surface of PTFE samples by water droplets. A Scotch ™ tape adhesion test, after a thin film of Cu or Al was evaporated on the irradiated surface, and a tensile test after irradiated samples were glued to sample holders by an adhesive glue (Crystal Bond) was also run. The SEM micrographs showed increasing roughness with fiber forest-like texture with increasing ion dose. The Ar+ with an O2 environment produced finer and denser fiber forest-like texture than that without O2. The high-resolution XPS spectra showed decreased intensity of the F1s peak and formation of the O1s peak when irradiated with the O2 environment. The increase of the O1s peak may be attributed to the reaction of oxygen atoms and the free radicals created by Ar+ bombardment. The wettability of water droplets on the irradiated surfaces was found to be inversely proportional to the surface roughness. Adhesion tests were conducted on 2000 Å thick Al or Cu film. Full detachment of the metal films was observed when PTFE samples were not modified. Partial detachment of the Al film occurred when PTFE was irradiated without the O2 environment, regardless of ion dose. No detachment of the film occurred when PTFE was irradiated with the O2 environment with the ion dose exceeding 1 × 1016 ions/cm2. Partial detachment of Cu film was observed with or without the O2 environment when the ion dose was 5 × 1014 ions/cm2. No detachment occurred with or without the O2 environment when the ion dose was 1 × 1015 ions/cm2 or greater. The tensile test showed that adhesion of an adhesive cement (Crystal Bond) to the irradiated PTFE samples increased significantly with increasing ion dose up to 1 × 1016 ions/cm2. Possible mechanisms for the improved adhesion are given. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1913–1921, 1997  相似文献   

8.
For medical applications, 4,4′‐dicyclohexyl methane diisocyanate (HMDI)‐based poly(carbonate urethane)s were synthesized from HMDI and 1,4‐butanediol as hard segments and poly(carbonate diol) (number‐average molecular weight = 2000 g/mol) as soft segments. The effects of wide‐range γ irradiation on the samples were examined through a series of analytical techniques. Scanning electron microscopy revealed that γ irradiation etched and roughened the surfaces of the irradiated samples. The gel content and crosslinking density measurements confirmed that crosslinking occurred along with degradation at all of the investigated irradiation doses and the degree of both crosslinking and degradation increased with increasing irradiation dose. Fourier transform infrared spectroscopy demonstrated that chain scission in the γ‐irradiated samples occurred at the carbonate and urethane bonds. The decreasing molecular weight and tensile strength indicated that the degradation increased with the γ‐irradiation dose. Differential scanning calorimetry and dynamic mechanical thermal analysis indicated that γ irradiation had no significant effect on the phase‐separation structures. There was a slight reduction in the contact angle. An evaluation of the cytotoxicity demonstrated the nontoxicity of the nonirradiated and irradiated polyurethanes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41049.  相似文献   

9.
A comparative study of the treatment of polytetrafluoroethylene (PTFE) and poly(vinyl fluoride) (PVF) with “Tetra-Etch” has been carried out. The treatment of PTFE resulted in extensive changes in surface chemistry and topography, whereas with PVF there was no significant change in topography and the chemical changes were much less marked. However, treatment of both polymers resulted in large increases in bond strength.

Multiple bonding experiments in which samples are repeatedly fractured and re-bonded were carried out with untreated PTFE and PVF. These resulted in moderate increases in bond strength with PTFE and large increases with PVF. The results indicate that weak boundary layer (WBL) removal is a key element in adhesion improvement by “Tetra-Etch” on PVF. With PTFE, WBL removal also improves adhesion, but the chemical and/or topographical changes introduced by the “Tetra-Etch” are required for optimum performance.  相似文献   

10.
X-ray diffraction of CSH(1) samples with a calcium to silicon ratio of 1.25 and 1.50 after room temperature desorption showed a step-like decrease from 12.5Å to 10.0Å and 12.4Å to 9.9Å respectively. The step-like decrease is not as well defined in CSH(1) with a higher calcium to silicon ratio. A distinct 0.6Å basal spacing decrease occurs as the relative humidity drops from 100 to 35 percent.  相似文献   

11.
A combination technique of Nd:YAG laser (wavelength: 1064 nm) irradiations and chemical etchings was applied to fabricate microsize U-shaped grooves on the surface of CuO-doped BaO–TiO2–GeO2 glass, and chemical etching behaviors were examined by using a confocal scanning laser microscope. Continuous-wave Nd:YAG lasers with a power of 0.7–0.8 W were irradiated onto the glass surface and scanned at a speed of 10 μm/s, inducing structural modified lines with refractive index changes. The chemical etching rates for the refractive index changed lines in a nitric acid solution (1 N HNO3) were larger than those for the base glass (nonirradiated part). The etching profile was changed gradually from W-shaped to U-shaped grooves with increasing etching time. The sharp bending lines with an angle of 150° and the cross-linked lines were also smoothly etched. The U-shaped grooves with a surface covered by nonlinear optical Ba2TiGe2O8 crystals were formed by the crystallization of etched samples. This study proposes that the patterning of microchannels with optical functional surfaces is possible on the glass surface using the present technique.  相似文献   

12.
Two epoxy adhesive types, Cole-Parmer and Devcon, were used for preparing aluminum-epoxy bondings. The adherend surfaces, of 30 mm in diameter, were prepared using grits of 120, 240, and 320 followed by a final grit of 400, according to the ASTM D897 standard. The curing was set at 72 h at room temperature. The samples were submitted to irradiation for different times in the pool of a SLOWPOKE-2 reactor which produced thermal neutrons, fast neutrons, and γ rays. The tensile properties of nonirradiated and irradiated samples were obtained with an Instron Tester, model 4206. The failure stress, about 11 MPa for nonirradiated samples, had a large decrease after a short period of irradiation and then constantly increased for longer irradiation periods. This may be explained by a predominant effect of crosslinking over chain scissions for higher irradiation doses. The density data and tensile properties of the bulk cured epoxy (Devcon) also supported the above findings. The presence of water on the bonding joints had an effect of exaggerating the irradiation effects on the strength of joints. The use of the adhesive failure modes to group the results into subgroups has permitted the reduction of the spread of the results from the tensile tests. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 37–47, 1998  相似文献   

13.
Adhesion of fluoropolymers to copper and to other polymers is examined using a range of fluoropolymer types (PTFE, PFA, extruded, skived and cast films), surface modification techniques such as sodium naphthalenide (Na/naphth), acid stripping and lamination to produce surfaces of controlled roughness, and three tests of adhesion (90 degree peel tests, torsional shear tests and stripping of transmission electron microscopy (TEM) replicas). A combination of chemical and physical modification is required to produce good adhesion, with the relative importance of each dependent upon the specific adhesion test used. For relatively smooth-surfaced films, Na/naphth appears to function by increasing both the chemical functionality and the mechanical integrity of a surface layer. Untreated PTFE and PFA show interfacial failure and negligible adhesion. Smooth-surfaced PTFE with superficial surface modification, e.g. after lamination to shiny copper foil or after acid stripping of defluorinated material, often fails by fibrillation of the fluoropolymer surface. For short sodium etch times, adhesion is improved and the failure mode is interfacial. For long etch times, there is a mixed mode of failure. Fibrillation in smooth-surfaced PFA systems was not observed. Adequate adhesive strength in these systems could only be achieved by an increase in the surface roughness. The best adhesion could be achieved by surface roughening, followed by Na/naphth treatment. For such PTFE surfaces plated with copper, peel and shear tests showed a mixed mode of failure, with copper and fluoropolymer found on both failure surfaces by x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS). Extensive fibrillation occurred at the locus of failure. Provided chemical modification is adequate to allow wetting, the roughness of the surface dominates the properties of the adhesive bond. Prolonged Na/naphth treatment (e.g. one hour) causes a reduction in peel strengths.  相似文献   

14.
Adhesion of fluoropolymers to copper and to other polymers is examined using a range of fluoropolymer types (PTFE, PFA, extruded, skived and cast films), surface modification techniques such as sodium naphthalenide (Na/naphth), acid stripping and lamination to produce surfaces of controlled roughness, and three tests of adhesion (90 degree peel tests, torsional shear tests and stripping of transmission electron microscopy (TEM) replicas). A combination of chemical and physical modification is required to produce good adhesion, with the relative importance of each dependent upon the specific adhesion test used. For relatively smooth-surfaced films, Na/naphth appears to function by increasing both the chemical functionality and the mechanical integrity of a surface layer. Untreated PTFE and PFA show interfacial failure and negligible adhesion. Smooth-surfaced PTFE with superficial surface modification, e.g. after lamination to shiny copper foil or after acid stripping of defluorinated material, often fails by fibrillation of the fluoropolymer surface. For short sodium etch times, adhesion is improved and the failure mode is interfacial. For long etch times, there is a mixed mode of failure. Fibrillation in smooth-surfaced PFA systems was not observed. Adequate adhesive strength in these systems could only be achieved by an increase in the surface roughness. The best adhesion could be achieved by surface roughening, followed by Na/naphth treatment. For such PTFE surfaces plated with copper, peel and shear tests showed a mixed mode of failure, with copper and fluoropolymer found on both failure surfaces by x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS). Extensive fibrillation occurred at the locus of failure. Provided chemical modification is adequate to allow wetting, the roughness of the surface dominates the properties of the adhesive bond. Prolonged Na/naphth treatment (e.g. one hour) causes a reduction in peel strengths.  相似文献   

15.
Scrap poly(tetrafluoroethylene) (PTFE) was γ irradiated under an ambient atmosphere in order to produce extensive chain scission and oxidative degradation. After irradiation the PTFE was ground into a fine powder (2°‐PTFE) and grafted with styrene (St), vinyl acetate (VAc), and 4‐vinylpyridine (4‐VP) by using the direct irradiation technique. The grafted PTFE were then blended with low density polyethylene (LDPE). The study covered the characterization of irradiated PTFE and grafted 2°‐PTFE powder with various methods. Mechanical grinding was found to reduce trapped radicals formed during the irradiation process faster than the annealing process. Grafting on 2°‐PTFE was followed by gravimetric analysis, TGA, and the change in the particle size of the samples. Although we reached almost 20% grafting by weight in the St and 4‐VP monomers, VAc grafting was found to be maximum at around 8% by weight at the maximum absorbed dose. The addition of VAc grafted 2°‐PTFE into LDPE produced better final mechanical properties with a fine dispersion. However, as may be expected, the incorporation of the other two 2°‐PTFEs into LDPE showed low film quality and poor mechanical properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 816–826, 2001  相似文献   

16.
Summary: The effect of electron‐beam (EB) irradiation on interfacial adhesion in bioflour (rice‐husk flour, RHF)‐filled poly(propylene) (PP) biocomposites in which either only the RHF had been EB irradiated or the whole biocomposite had been EB irradiated was examined at different EB‐irradiation doses. The tensile strengths of PP–RHF biocomposites with EB‐irradiated RHF and EB‐irradiated PP and PP–RHF biocomposites were slightly higher than those of the nonirradiated samples. The improved interfacial adhesion of PP–RHF biocomposites with EB radiated RHF and the EB‐irradiated PP–RHF biocomposites compared with the nonirradiated samples was confirmed by the morphological characteristics. In addition, the thermal stability of EB‐treated biocomposites was slightly higher than those of nonirradiated samples at the irradiation doses of 2 and 5 Mrad. However, at the high irradiation dose (30 Mrad), the tensile strengths of the biocomposites were slightly decreased by main‐chain scission (degradation) of PP and RHF. Attenuated total reflectance FT‐IR and X‐ray‐photoelectron‐spectroscopy findings confirmed this result by showing that that EB irradiation changed the functional groups of RHF, PP, and the biocomposites and improved the surface characteristics of the biocomposites. The thermal characteristics of the EB‐irradiated PP and biocomposites were investigated using differential scanning calorimetry. From the results, we concluded that use of low‐dose EB radiation increases the interfacial adhesion between matrix polymer and biofiller.

  相似文献   


17.
The cross-linked polytetrafluoroethylene (PTFE) and PTFE/carbon fiber (CF) composites were synthesized through electron beam irradiation in the molten state of PTFE at a controlled temperature of 340 ± 3°C under an inert gas atmosphere for this study. The wear resistance of raw (raw-PTFE), irradiated modified PTFE (RM-PTFE), and CF-reinforced PTFE composites were evaluated using a friction and wear testing machine. The testing was conducted under varying ambient temperatures and dynamic loads. After irradiation, the samples were sectioned into specific sizes for subsequent testing purposes. Under the test conditions of 4.64 MPa positive pressure, 800 rpm speed, and a duration of 300 s at 20°C, the wear amount of PTFE after irradiation modification is significantly reduced from 1.4103 mm to only 0.0233 mm, representing a remarkable reduction by a factor of 60. Similarly, under the test conditions of 4.64 MPa positive pressure, 200 rpm speed, and a duration of 300 s at 20°C, the friction coefficient of PTFE after irradiation modification is substantially decreased from an initial value of 0.13 to just 0.03. The observed improvement can be attributed to the transformation of PTFE's crystalline form into spherulite, accompanied by a significant enhancement in the degree of cross-linking within its molecular chain. The PTFE was supplemented with 10% CF prior to irradiation. Under the test conditions of a positive pressure of 4.64 MPa, rotation speed of 800 rpm, and a duration time of 300 s at 20°C, the wear amount of the composite material measured only 0.0007 mm, representing a reduction by a factor of 2000 compared to that observed for pure PTFE. This improvement can be attributed to the CF filler's high wear resistance properties and the composite's enhanced thermal conductivity.  相似文献   

18.
The photolamination of high‐density polyethylene (HDPE) by bulk photografting is described, along with a discussion of the adhesion mechanism. HDPE can be photolaminated very easily with a thin poly(acrylic acid) layer, photopolymerized from acrylic acid, with very strong adhesion obtained after a short time of UV irradiation; the adhesion failure mode is polyethylene breakage. Thicker HDPE sheets require longer irradiation times for strong adhesion. Methacrylic acid or hydroxyethyl methacrylate provides no adhesion of HDPE at all after irradiation. When glycidyl acrylate is used alone between HDPE sheets, the peel strength of the photolaminated polyethylene is only approximately 320 N/m, but when glycidyl acrylate or hydroxyethyl methacrylate is grafted with acrylic acid, very good adhesion can be obtained. It is proposed that stronger adhesion is produced by a less branched grafted chain structure, which permits much more chain entanglement. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1097–1106, 2005  相似文献   

19.
Poly(tetrafluoroethylene) (PTFE) surface was modified by the graft polymerization of sodium vinylsulfonate, and the chemical composition of the graft-polymerized PTFE surface was analyzed by X-ray photoelectron spectroscopy. Peroxides were formed on the PTFE surface by a combination procedure of argon plasma irradiation and air exposure, and the graft polymerization of sodium vinylsulfonate was initiated by the peroxide groups at 65–80°C. The peroxide concentration is 3 × 10+13 to 5 × 10+13 numbers/cm2. The average degree of polymerization of the graft polymers was 3.4 × 103. The graft polymer is distributed over the PTFE surface, but part of the PTFE surface remains uncovered. The coverage with the graft polymer is 43%. The PTFE surface graft polymerized with sodium vinylsulfonate was somewhat hydrophilic, but the hydrophilicity was lower than that of the PTFE surface modified by plasma treatment. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 77–84, 1997  相似文献   

20.
Polymeric films deposited from the vapor of C4Cl6 by the surface-photopolymerization technique are electrically and mechanically continuous on various substrates when very thin. The thickness of the films depends upon irradiation time with wavelengths in the region 2000-3000Å. Re-irradiation in oxygen (air) of the polymeric films with light of these low wavelengths leads to patterned removal of the films. Since films 500Å thick and less can resist etchants for various substrates, a new and extremely thin positive photoresist system is possible. Resolution of etched substrates to lines a few microns wide has been demonstrated. If the polymeric films from C4Cl6 are deposited from the monomeric vapor at lower substrate temperatures they are soluble in various solvents. Re-irradiation with UV light with the films in vacuum produces a patterned fixing of the polymer with respect to acetone. A negative photoresist system is therefore possible. Again, films of thickness 500Å and less can resist various etchants such that substrates can be etched to high resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号