首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The effect of wood species on the mechanical and thermal properties of wood–plastic composites (WPCs) was explored. Various wood species, including cherry, sweet gum, hickory, yellow poplar, Osage orange, walnut, eastern red cedar, pine, maple, and red oak, were compounded with virgin isotactic polypropylene in a 50 : 50 weight ratio and injection‐molded. The tensile strength of WPCs made with cedar and hickory was higher than that of WPCs made with maple, oak, and Osage orange. The tensile modulus of WPCs made with gum and walnut was higher than that of oak WPCs. The tan δ peak temperatures and peak values from dynamic mechanical analysis indicated that pine and hickory WPCs had higher amorphous or void contents than walnut and cherry WPCs. The induction time during isothermal crystallization suggested that red cedar, cherry, and gum WPCs had higher nucleation density than walnut, pine, and oak WPCs. Dynamic mechanical properties of the WPCs appeared to be related to the crystallization behavior of the wood flour, which depends on the surface roughness. Although there were statistically significant differences in mechanical properties among the species, the differences were small, implying that wood flours from many species can be used successfully as raw materials for WPCs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The feasibility for recycling composites of polystyrene-hardwood aspen fiber (chemithermomechanical pulp or CTMP) was tested by evaluating the mechanical properties and dimensional stability of the original polymer and the recycled composites. The mechanical properties and dimensional stability of composites were investigated under extreme conditions (e.g., exposure to boiling water and at room temperature as well as exposure to +105°C and −20°C). The influence of coupling agent, e.g., 3% poly[methylene (polyphenyl isocyanate)] (PMPPIC), and various treatments, e.g., fiber coated with 10% polymer +8% PMPPIC and grafted with polystyrene 89.1% add-on, on the properties of the composites have also been studied. Compared with the original composites, the mechanical properties and dimensional stability of the recycled composites did not change significantly even after exposure to extreme conditions. Moreover, the treated composites offered improved properties compared with nontreated and original polymer under all experimental conditions.  相似文献   

3.
Polystyrene (PS) from packing materials and plastic cups was reinforced with 30 and 50% wood flour through a blending process with and without a commercial compatibilizing agent. The processability of the pure recycled polystyrene (rPS) and wood–rPS composites was studied in terms of the torque of the mixing process; this was then compared with that of a commercial virgin multipurpose PS. The physical and mechanical properties were compared with those of the virgin PS reinforced with 30 and 50% wood flour. The results show that the mechanical properties of the pure and reinforced rPS did not decrease with respect to the virgin PS, and in terms of the impact strength, the rPS was superior to the virgin plastic. The mechanical properties were not affected by the commercial compatibilizing agent, but the torque of the blends was significantly lower with the compatibilizer. Differential scanning calorimetry (DSC) and dynamic mechanical analysis were used to study the glass‐transition temperature (Tg) of both the pure virgin PS and pure rPS and the wood flour–PS composites. The Tg values of the rPS and wood–rPS composites were higher than those of the virgin PS and wood–virgin PS composites. The use of rPS increased the stiffness and flexural modulus of the composites. Thermogravimetric analysis revealed that the thermal stability of rPS and its composites was slightly greater than that of the virgin PS and its composites. These results suggest that postconsumer PS can be used to obtain composite materials with good mechanical and thermal properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
5.
Thermoplastic olefin (TPO)/clay nanocomposites were made with clay loadings of 0.6–6.7 wt %. The morphology of these TPO/clay nanocomposites was investigated with atomic force microscopy, transmission electron microscopy (TEM), and X‐ray diffraction. The ethylene–propylene rubber (EPR) particle morphology in the TPO underwent progressive particle breakup and decreased in particle size as the clay loading increased from 0.6 to 5.6 wt %. TEM micrographs showed that the clay platelets preferentially segregated to the rubber–particle interface. The breakup of the EPR particles was suspected to be due to the increasing melt viscosity observed as the clay loading increased or to the accompanying chemical modifiers of the clay, acting as interfacial agents and reducing the interfacial tension with a concomitant reduction in the particle size. The flexural modulus of the injection moldings increased monotonically as the clay loading increased. The unnotched (Izod) impact strength was substantially increased or maintained, whereas the notched (Izod) impact strength decreased modestly as the clay loading increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 928–936, 2004  相似文献   

6.
选用生活垃圾中的废旧塑料和农林废弃物为主要原料,采用不同方法对木粉进行表面处理,通过共混、挤出工艺合成木塑复合材料,考察木粉表面处理方法对于木塑符合材料性能的影响。结果表明:采用自制的复配偶联剂,用固相接枝法在木粉表面进行逐层化学反应对木粉进行表面处理制备的木塑复合材料在力学性能上优于单一偶联剂改性。  相似文献   

7.
The dependency of the mechanical properties (Young's modulus, maximum load, breaking strain, and breaking energy) of polystyrene (PS) and high-impact polystyrene (HIPS) on the tensile deformation speeds was examined without changing the mode of deformation or the shape of the test specimen. It was found that HIPS has an excellent mechanical balance compared with PS for both low (1.7 × 10?4 to 2.9 × 10?2 m/sec) and high (1.3–16m/sec) speeds. This is due to the following two mechanisms ( which have different time responses) originating from the dispersed rubber particles: (1) at low speeds, the generation of large numbers of microcrazes, and (2) at high speeds, tensile-orientation hardening of the rubber and cold-drawing of the PS matrix resulting from the rise in temperature accompanied by the abrupt eleongation of the rubber phases.  相似文献   

8.
The effect of the delignification of hornbeam fibers on the mechanical properties of wood fiber–polypropylene (PP) composites was studied. Original fibers and delignified fibers at three levels of delignification were mixed with PP at a weight ratio of 40:60 in an internal mixer. Maleic anhydride (0.5 wt %) as the coupling agent and dicumyl peroxide (0.1 wt %) as the initiator were applied. The produced composites were then hot‐pressed, and specimens for physical and mechanical testing were prepared. The results of the properties of the composite materials indicate that delignified fibers showed better performance in the enhancement of tensile strength and tensile modulus, whereas the hardness of the composites was unaffected by delignification. Delignified fibers also exhibited better water absorption resistance. Notched impact strength was higher for delignified fiber composites, but it was reduced at higher delignification levels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4759–4763, 2006  相似文献   

9.
Polypropylene/wood fiber composites were prepared at three different temperatures: 170°C, 180°C, and 190°C. The surface of wood fibers was modified through the use of silane coupling agents and/or coating with polypropylene or maleated polypropylene. The fiber coating was performed by propylene polymerization in the presence of wood fibers or by immersion in an o-dichlorobenzene polypropylene (or maleated polypropylene) solution. Tensile and three-point bending tests were performed in order to evaluate the adhesion between matrix and wood fibers. Evidence shows that 180°C is the best mixing temperature, while the use of vinyl-tris (2-methoxy ethoxy) silane with or without maleated polypropylene coating is the best surface treatment. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1227–1235, 1997  相似文献   

10.
Composites from SBR/PS blend and the chemically treated wood flour have been prepared. The materials used for such treatment are NaOH, MAN, MAN‐glycidyl methacrylate, and silane coupling agent, used to improve the dispersion of wood flour in the SBR/PS blend. The effects of chemical treatment on curing characteristics, and physicomechanical and electrical properties of SBR/PS composites were studied. The rheological as well as the mechanical parameters were improved by using the modified wood flour with MAN‐glycidyl methacrylate (SMG), followed by SM obtained at 15 phr, while the other treatments slightly affect these parameters. The permittivity ?′ and dielectric loss ?″ were measured in the frequency range from 100 Hz up to 100 kHz and at temperatures ranging from 30 up to 90°C. The dielectric investigations indicate that the samples containing wood flour treated with both SMG and SM increase the values of ?′ and decrease those of ?″, which allow such samples to be used in insulation purposes. The increase in the relaxation time and the crosslinking density ν for such composites indicate the increase in filler–polymer interaction rather than filler–filler interaction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5861–5870, 2006  相似文献   

11.
Wood fiber of aspen was used as a reinforced filler in linear low-density polyethylene (LLDPE). To improve the compatibility between the wood fiber and the LLDPE matrix, the wood fiber was treated with titanate coupling agents (i.e., TC-PBT and TC-POT) or grafted by acrylonitrile. Both treatments resulted in an improvement in the mechanical properties of the resultant composites compared with the composites filled with the untreated wood fiber. Moreover, the grafting method displayed a more obvious benefit than that of titanate coupling methods to the mechanical property improvement. This was attributed to the crystalline structure of the wood fiber to be destroyed by grafting acrylonitrile, and the amorphous fiber was easily deformed to enhance fiber adhesion at the LLDPE matrix. In addition, the effect of the concentration of the filled wood fiber and the amount of coupling agent or grafting ratio on the mechanical properties of composites are discussed. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1561–1568, 1997  相似文献   

12.
Mechanical properties of processed polymers depend sensitively on their microstructure. In order to understand how different processing conditions affect the mechanical properties of polymers, one needs a means to describe the process-induced microstructure. Because the characteristic relaxation times of processed polymer chains often span several orders of magnitude, it is commonly the case that partial relaxation of the chains is frozen into the final product. We report results of molecular simulations by the Semi-Grand Canonical Monte Carlo (SGMC) method to study the orientation-dependent elasticity of glassy polystyrene as a function of both the system-average degree of orientation and the degree of relaxation of chain ends at a constant average orientation, in accord with the tube model of Doi and Edwards. Our simulations reproduce quantitatively the experimentally observed trends in the tensile modulus E11 as a function both of the system-average orientation and of the inhomogeneity of the orientation along the chain due to rapid relaxation of chain ends. The results show that the partial relaxation of the polymer chains is sufficient to explain the observed variation of mechanical properties for samples that differ in processing history, yet have the same observed birefringence.  相似文献   

13.
The dynamic-mechanical behaviour and the tensile moduli of unstretched and stretched semicrystalline s-PS films, presenting different polymorphic forms (α, γ, δ and clathrate) but similar crystallinity and orientation, have been compared. The main aim is to elucidate the possible influence of different crystalline phases, being largely different in chain conformation and density, on mechanical properties of s-PS semicrystalline samples. For unstretched films presenting a preferential perpendicular orientation of the chain axes, the highest elastic modulus is observed for films with the high density γ phase while for uniaxially oriented films the highest modulus is observed for films with the trans-planar α phase. As for the clathrate films, the guest molecules when only included into the crystalline clathrate phase, have no plasticizing effect.  相似文献   

14.
影响高抗冲聚苯乙烯力学性能的因素   总被引:4,自引:0,他引:4  
综述了影响高抗冲聚苯乙烯(HIPS)力学性能的各种因素,如苯乙烯均聚物的相对分子质量及其分布、橡胶接枝、橡胶粒子及其分布和橡胶相体积分数等。强调HIPS结构是影响其力学性能的直接因素,其他因素都是通过影响高分子结构来影响其力学性能的。  相似文献   

15.
This paper investigates the combustion characteristics of 12 wood species natural to Brazil. A mass loss cone calorimeter was used to obtain the properties associated with (i) heat release rate (HRR), peak HRR, and total heat released; (ii) total mass loss and mass loss rate; (iii) average effective heat of combustion; and (iv) time to ignition, time of pyrolysis and temperature of ignition. The samples used in this work were as follows: (i) prepared in accordance to ISO 5660‐1:2002; (ii) oven dried; (iii) irradiated with a constant heat flux of 50 kW/m2; and (iv) exhibit wood fiber orientation in a plane orthogonal to the flux incidence. Finally, the paper explores the possibility of linking the obtained combustion properties with the density and classes of selected wood species. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A. De Francesco  R.A. Duckett 《Polymer》2004,45(23):8005-8011
Oriented samples of polystyrene have been produced by drawing at temperatures just above the glass transition range. Birefringence measurements have been used to characterise the degree of orientation. Mechanical measurements of elastic modulus and tensile yield stress have been made in the direction of drawing and it has been established that the birefringence value does not uniquely determine the mechanical properties—samples drawn to a high draw ratio at high temperatures have a higher modulus and yield stress than samples drawn at lower temperatures and lower draw-ratios to the same birefringence. The results are explained qualitatively by the convective constraint release theory of McLeish et al.  相似文献   

18.
Blends containing 3 wt % low molecular weight polybutadiene (PB) in a polystyrene (PS) matrix were prepared via a precipitation technique that yielded spherical, submicron pools of PB. Tensile specimens made from these blends were then irradiated with high energy electrons in air at dose levels from 0 to 70 Mrads. The blends, which previously showed high levels of toughness approaching that of high impact PS, lost all enhanced toughness when irradiated above 10 Mrads. Analysis of pure PS specimens irradiated over the dose range from 0 to 45 Mrads showed no appreciable dependence of mechanical behavior on dose level. Molecular weight studies of the polybutadiene demonstrated only a very modest increase in molecular weight in the dose range studied here; therefore, reduced mobility of the PB in the blends was not the reason for the dramatic drop in toughness with radiation dose. It was concluded that radiation-induced scission of the PS near the surface of the blends resulted in a significant local reduction in molecular weight. This degraded layer led to premature craze failure and hence a low level of toughness. It was demonstrated that the absence of oxygen during the irradiation process or the removal of the scissioned surface layer via mechanical abrasion resulted in a recovery of toughness. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Irradiation of 3 mm polystyrene sheet in air at 30°C with γ rays caused a rapid decrease in the tensile and flexural strengths and strains to fracture. These properties were decreased to 50% of their initial values after ca. 80 Mrads and to 25% after ca. 200 Mrads, beyond which dose the rate of change was relatively small. These results contrast with the negligible changes that are observed after 600 Mrads in vacuum. The effect of irradiation in air has been correlated with decreasing molecular weight at the surface, even though crosslinking predominated over the complete sample so that a gel point was reached at a dose slightly in excess of 100 Mrads. Scission and crosslinking yields, G(S) and G(X), were determined as a function of depth by gel permeation chromatography of layers removed progressively from the surface. G(S) decreased and G(X) increased with depth, in accord with the concepts of increased scission by reaction with oxygen and a diffusion effect. Unusual transverse cracking to a limited depth occurred during tensile measurements, a phenomenon that is attributed to the nonuniform molecular weight profile.  相似文献   

20.
Impact strength and dynamic mechanical analysis of polystyrene/polyphenylsilses-quioxane (PS/PPSQ) in situ blend was studied. Toughness, thermal stability, and storage modulus of the brittle PS matrix could be improved by addition of some much more brittle PPSQ particles when the percentage of PPSQ in this blend was not more than 5%. The toughening mechanism about the deformation of the PPSQ particles, which is due to good adhesion between the dispersed PPSQ particles and the continuous PS matrix and some particle-induced crazes or yielding zones, was discussed. PPSQ has the better effect on the modification of PS than its prepolymer with low molecular weight. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号