共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment 总被引:2,自引:0,他引:2
K. Durga Rao V. Gopika H.S. Kushwaha A. Srividya 《Reliability Engineering & System Safety》2009,94(4):872-883
Traditional fault tree (FT) analysis is widely used for reliability and safety assessment of complex and critical engineering systems. The behavior of components of complex systems and their interactions such as sequence- and functional-dependent failures, spares and dynamic redundancy management, and priority of failure events cannot be adequately captured by traditional FTs. Dynamic fault tree (DFT) extend traditional FT by defining additional gates called dynamic gates to model these complex interactions. Markov models are used in solving dynamic gates. However, state space becomes too large for calculation with Markov models when the number of gate inputs increases. In addition, Markov model is applicable for only exponential failure and repair distributions. Modeling test and maintenance information on spare components is also very difficult. To address these difficulties, Monte Carlo simulation-based approach is used in this work to solve dynamic gates. The approach is first applied to a problem available in the literature which is having non-repairable components. The obtained results are in good agreement with those in literature. The approach is later applied to a simplified scheme of electrical power supply system of nuclear power plant (NPP), which is a complex repairable system having tested and maintained spares. The results obtained using this approach are in good agreement with those obtained using analytical approach. In addition to point estimates of reliability measures, failure time, and repair time distributions are also obtained from simulation. Finally a case study on reactor regulation system (RRS) of NPP is carried out to demonstrate the application of simulation-based DFT approach to large-scale problems. 相似文献
2.
Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers’ conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. 相似文献
3.
In this paper we employ a Monte Carlo method to compute the first-order, differential sensitivity indexes of the basic events characterizing the reliability behavior of the containment spray injection system of a nuclear power plant. An exemplification is provided as to how the obtained sensitivity indexes can be used to drive improvements in the system design and operation. 相似文献
4.
Liping Wang Ramana V. Grandhi Dale A. Hopkins 《International journal for numerical methods in engineering》1995,38(10):1721-1738
The objective of this paper is to conduct reliability-based structural optimization in a multidisciplinary environment. An efficient reliability analysis is developed by expanding the limit functions in terms of intermediate design variables. The design constraints are approximated using multivariate splines in searching for the optimum. The reduction in computational cost realized in safety index calculation and optimization are demonstrated through several structural problems. This paper presents safety index computation, analytical sensitivity analysis of reliability constraints and optimization using truss, frame and plate examples. 相似文献
5.
Principles of engineering safety: Risk and uncertainty reduction 总被引:1,自引:0,他引:1
This article provides a systematised account of safety engineering practices that clarifies their relation to the goal of safety engineering, namely to increase safety. We list 24 principles referred to in the literature of safety engineering, dividing them into four major categories: Inherently safe design, Safety reserves, Safe fail and Procedural safeguards. It emerges from this systematisation that important aspects of these methods can be better understood with the help of the distinction between risk and uncertainty. 相似文献
6.
This is the last in a series of five papers that discuss the Information Decision and Action in Crew (IDAC) context for human reliability analysis (HRA) and example application. The model is developed to probabilistically predict the responses of the control room operating crew in nuclear power plants during an accident, for use in probabilistic risk assessments (PRA). The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper describes a dynamic PRA computer simulation program, accident dynamics simulator (ADS), developed in part to implement the IDAC model. This paper also provides a detailed example of implementing a simpler version of IDAC, compared with the IDAC model discussed in the first four papers of this series, to demonstrate the practicality of integrating a detailed cognitive HRA model within a dynamic PRA framework. 相似文献
7.
8.
Traditionally, bridges are designed using static loads that are increased by the dynamic load allowance (DLA) factor (or dynamic amplification factor). The DLA factor is a function of span or first flexural natural frequency of the bridge, and indirectly incorporates the dynamic effects of moving vehicles in the design. This article firstly reviews the literature on impact loading of bridge decks. Analytical methods published previously are evaluated and the bridge–vehicle interaction is found to be the most reliable method among them. The article then presents a 3D finite element model to study the bridge–vehicle interaction. Finite elements are developed to simulate the trucks, the road surface and the composite girder bridge itself. Truck parameters include the body, suspension and tires, with variables being the total weight and the speed. The bridge superstructure is treated as a 3D composite steel girder bridge incorporating special end springs that simulate the elastomeric bearings. A parametric study is performed to identify the effect of various parameters on DLA, such as vehicle speed, aspect ratio of steel girders, stiffness of neoprene, type of vehicle, vehicle lane eccentricity and initial bounce of the vehicle due to road surface roughness. The results indicate that the DLA is correlated well with the velocity of the truck, especially at high speed. DLA is vehicle dependent and the dynamic and static live loads can be considered uncorrelated, except when the truck weight is less than 10 percent of the total deck weight, for which a low degree of correlation is observed. The DLA is decreased as the vehicle lane eccentricity (with respect to the deck centerline) is increased, and the same relationship exists with the bridge span length. No distinctive correlation is observed between the DLA and the initial bounce of vehicle at the time of entrance to span. 相似文献
9.
The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol’ sequences and Bucher’s design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method. 相似文献
10.
The present paper should be seen as a basis for discussion of important aspects of risk analysis and assessment, as well as attempting to describe risk assessment in accordance with the present state of the art. Risk assessment is thus presented in an overview form from the viewpoint of being a means for decision-making and thus within the formal framework of decision theory. First the motivation for risk analysis is given and the theoretical basis together with the practical aspects, methodologies and techniques for the implementation of risk assessment in civil engineering applications are explained and discussed. The paper furthermore addresses the problems associated with risk acceptance criteria, risk aversion and value of human life and attempts to provide suggestions for the rational treatment of these aspects. Finally a number of problem areas are highlighted and the needs for further education, research and dissemination are stressed. 相似文献
11.
Currently, comparison between countries in terms of their road safety performance is widely conducted in order to better understand one's own safety situation and to learn from those best-performing countries by indicating practical targets and formulating action programmes. In this respect, crash data such as the number of road fatalities and casualties are mostly investigated. However, the absolute numbers are not directly comparable between countries. Therefore, the concept of risk, which is defined as the ratio of road safety outcomes and some measure of exposure (e.g., the population size, the number of registered vehicles, or distance travelled), is often used in the context of benchmarking. Nevertheless, these risk indicators are not consistent in most cases. In other words, countries may have different evaluation results or ranking positions using different exposure information. In this study, data envelopment analysis (DEA) as a performance measurement technique is investigated to provide an overall perspective on a country's road safety situation, and further assess whether the road safety outcomes registered in a country correspond to the numbers that can be expected based on the level of exposure. In doing so, three model extensions are considered, which are the DEA based road safety model (DEA-RS), the cross-efficiency method, and the categorical DEA model. Using the measures of exposure to risk as the model's input and the number of road fatalities as output, an overall road safety efficiency score is computed for the 27 European Union (EU) countries based on the DEA-RS model, and the ranking of countries in accordance with their cross-efficiency scores is evaluated. Furthermore, after applying clustering analysis to group countries with inherent similarity in their practices, the categorical DEA-RS model is adopted to identify best-performing and underperforming countries in each cluster, as well as the reference sets or benchmarks for those underperforming ones. More importantly, the extent to which each reference set could be learned from is specified, and practical yet challenging targets are given for each underperforming country, which enables policymakers to recognize the gap with those best-performing countries and further develop their own road safety policy. 相似文献
12.
A.C Cleland 《International Journal of Refrigeration》1985,8(6):372-373
A commercially available computer package for refrigeration analysis, design and simulation is described. Its main applications are heat load determination, multi-stage compression plant layout design, and simulation of the interactions between refrigerant plant, applications and control systems. 相似文献
13.
A Supplementary Road Safety Package (SRSP) was developed in New Zealand in 1995/1996 to supplement the compulsory breath test (CBT) and speed camera programmes introduced in 1993. A major feature of the package was the use of emotion and shock advertising campaigns not only to affect high risk driving attitudes and behaviours towards speeding and drink-driving but also to encourage the use of safety belts. Furthermore, the SRSP also emphasised targeting enforcement to these three areas. This package continued for 5 years. This paper estimates the effect of the package on road trauma. The analysis shows that the Package made substantial impact on road safety and saved over 285 lives over the 5-year period. 相似文献
14.
Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of SeverityxProbability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode. 相似文献
15.
This paper has proposed an effective method to determine the minimum factor of safety (FS) and associated critical failure surface in slope stability analysis. The search for the minimum FS based on limit equilibrium methods is a complex optimization problem as the objective function is non-smooth and non-convex. Recently, particle swarm optimization (PSO) as a meta-heuristic optimization algorithm has been developed with success in treating various types of problems. In the current study, a new approach of PSO is proposed to calculate the safety factor of earth slopes. The safety factors of the general slip surfaces are calculated using Spencer method of slices, and each new slip surface is randomly generated by straight line technique. The reliability and efficiency of the proposed algorithm are examined by considering a number of published cases. The results indicate that the new method can predict a more critical failure mechanism with a lower FS and can outperform the other methods in the literature as well as standard PSO. Finally, the proposed method will be validated by considering an existing slope failure in Ulu Klang, Malaysia. 相似文献
16.
17.
Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network 总被引:1,自引:0,他引:1
To prevent an abnormal event from leading to an accident, the role of its safety monitoring system is very important. The safety monitoring system detects symptoms of an abnormal event to mitigate its effect at its early stage. As the operation time passes by, the sensor reliability decreases, which implies that the decision criteria of the safety monitoring system should be modified depending on the sensor reliability as well as the system reliability. This paper presents a framework for the decision criteria (or diagnosis logic) of the safety monitoring system. The logic can be dynamically modified based on sensor output data monitored at regular intervals to minimize the expected loss caused by two types of safety monitoring system failure events: failed-dangerous (FD) and failed-safe (FS). The former corresponds to no response under an abnormal system condition, while the latter implies a spurious activation under a normal system condition. Dynamic Bayesian network theory can be applied to modeling the entire system behavior composed of the system and its safety monitoring system. Using the estimated state probabilities, the optimal decision criterion is given to obtain the optimal diagnosis logic. An illustrative example of a three-sensor system shows the merits and characteristics of the proposed method, where the reasonable interpretation of sensor data can be obtained. 相似文献
18.
A quantitative risk assessment has been carried out by W. S. Atkins Ltd. and Kennedy and Donkin Transportation Ltd. for the conceptual stage of the proposed Channel Tunnel Rail Link. The assessment is one of the first for a railway system. It includes an integrated computer model. The whole risk model for the CTRL from base event data, through fault and event trees, to individual, collective and societal risks is processed using Lotus 1-2-3 spreadsheets. Variations to the design and operational assumptions and to the input data can be introduced into the model and the effect on risk calculated rapidly. This versatility is particularly useful because of the early stage of the project. It can be used to assist designers in consideration of possible design changes. 相似文献
19.
Many of the ongoing and expected uses of Probabilistic Safety Assessment (PSA)1 create new challenges to ensuring that the resulting conclusions are valid. This paper provides a summary of some of these challenges. Work conducted by the authors on Risk-Informed Inservice Inspection (RI-ISI) is used to illustrate these challenges. Means to address all of the challenges are not provided in detail in this paper. Several earlier papers discuss how these challenges can be addressed. References are provided for the interested reader (Chapman JR et al. In: PSA '95, vol. 1, Seoul, 1995: 177–80; Chapman JR et al. In: ICONE-IV, New Orleans, 1996; Dimitrijevic VB et al. In: Croatian Nuclear Society International Conference, Opatija, 1996: 245–54; Dimitrijevic VB et al. In: Croatian Nuclear Society International Conference, Opatija, 1996: 255–62; Dimitrijevic VB. In: Yugoslav Nuclear Society Conference, Belgrade, 1996: 53–61; O'Regan PJ et al. In: PSA '95, Seoul, vol. 1, 1995: 403–5; O'Regan PJ. In: ICONE-IV, vol. 5, New Orleans, 1996: 277–80). 相似文献
20.
Shenping Hu Quangen Fang Haibo Xia Yongtao Xi 《Reliability Engineering & System Safety》2007,92(3):369-377
Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice. 相似文献