首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasonic welding is one of the most popular techniques for joining thermoplastics because it is fast, economical, and easily automated. In near-field ultrasonic welding, the distance between the horn and the joint interface is 6 mm or less. This study investigated the near-field ultrasonic welding of amorphous (acrylonitrile-butadiene-styrene and polystyrene) and semicrystalline (polyethylene and polypropylene) polymers. High frequency ultrasonic wave propagation and attenuation measurements were made in order to estimate the dynamic mechanical moduli of the polymers. The estimated moduli were entered into a lumped parameter model in order to predict heating rates and energy dissipation. Experimental results showed that variations in the welding pressure had little effect on energy dissipation or joint strength; Increasing the amplitude of vibration increased the energy dissipation and the weld strength. For the semicrystalline polymers, increasing the weld time improved strength up to weld times greater than 1.5 s, where strength leveled off. For the amorphous polymers, the weld strength increased with Increasing weld time up to times of 0.8 s; for longer weld times, the power required was too high, causing overloading of the welder. Monitoring of the energy dissipation and static displacement or collapse provided valuable information on weld quality.  相似文献   

2.
Polyethylene (PE) is an extremely versatile plastic and has the largest sales turnover than other plastics. With new uses for PE, researchers continue to find innovative technologies to process and join the material. Ultrasonic welding is one such process that is rapidly emerging as a major joining process for thermoplastics because of its reliability, ease of operation, fastness, and economic feasibility. Amorphous polymers are ideal materials for ultrasonic welding, but semicrystalline polymers are difficult to weld in the far-field region. This paper deals with the far field welding of semicrystalline polymer/high-density polyethylene (HDPE). The temperature distribution has been modeled for varying lengths of the specimen using Ansys to predict the temperature spikes, which can be related to the performance of the joints achieved. Experimental work studied the temperature at the joint interface and the variation in tensile strength for different lengths of the specimen.  相似文献   

3.
Ultrasonic welding of thermoplastic composites has become an important process in industry because of its relatively low cost and resultant high quality joints. An experimental study, based on the Taguchi orthogonal array design, is reported on the effect of different processing factors on the joint strength of ultrasonically welded composites, including weld time, weld pressure, amplitude of vibration, hold time, hold pressure, and geometry of energy director. Three materials were used in the study: virgin polypropylene, and 10% and 30% glass‐fiber filled polypropylene composites. Experiments were carried out on a 2000‐Watt ultrasonic welding unit. After welding, the joint strength of the composites was determined by a tensile tester. For the factors selected in the main experiments, weld time, geometry of energy director and amplitude of vibration were found to be the principal factors affecting the joint property of ultrasonically welded thermoplastic composites. Glass‐fiber filled polymers required less energy for successful welding than the non‐filled polymer. The joint strength of welded parts increased with the fiber content in the composites. In addition, a triangular energy director was found to weld parts of the highest strength for virgin polypropylene and 10% glass‐fiber filled polypropylene composites, while a semi‐circular energy director was found to weld the highest strength parts for 30% glass‐fiber filled composites.  相似文献   

4.
An energy director is widely used in ultrasonic welding to increase the welding speed and quality. In the present work, three different types of energy directors were studied—namely, a triangular, a rectangular, and an innovative semicircular energy director. Experiments were performed using far‐field test samples made of amorphous‐type (ABS) and semicrystalline‐type (PE) thermoplastics. It was found that the weld time is an important parameter of ultrasonic welding for the three types of energy directors studied. Weld pressure has different effects for the types of plastics tested. Increasing the weld pressure will decrease the welding efficiency for ABS. But for PE, increasing the weld pressure to four bars will increase the welding efficiency. The shape of the energy director was found to significantly affect the welding efficiency. In comparison, a semicircular shape was found to yield the highest welding efficiency under the same welding conditions and the triangular shape the lowest. Temperature measurements at the triangular energy director during the welding process indicate that the energy director absorbed 48.5% of the welding energy for ABS and 21.1% for PE. The different energy absorption rates are probably due to the difference in elasticity and viscosity between amorphous (ABS) and semicrystalline (PE) plastics.  相似文献   

5.
Order of magnitude estimates are presented for processes that play a role in ultrasonic welding. The fact that the sonotrode may not always be in contact with the product being welded, which results in the sonotrode repeatedly hammering the product, is accounted for in this study. The calculations do not use estimates for loss or storage modulus of plastics at 20 kHz around the glass or melting point for amorphous or semicrystalline polymers respectively. The flow of molten polymer in the weld zone is shown to be a laminar viscous squeeze flow driven by the welding pressure. An energy balance is used to show that the heat generated by the internal damping is, in part, used in heating cold material and is squeezed out into weld flash. The theoretical findings are correlated with existing practical pointers on ultrasonic welding in series and mass production in industry.  相似文献   

6.
Welding of polymer interfaces   总被引:1,自引:0,他引:1  
Studies of strength development at polymer-polymer interfaces are examined and applications to welding of similar and dissimilar polymers are considered. The fracture properties of the weld, namely, fracture stress, σ, fracture energy, GIc, fatigue crack propagation rate da/dN, and microscopic aspects of the deformation process are determined using compact tension, wedge cleavage, and double cantilever beam healing experiments. The mechanical properties are related to the structure of the interface via microscopic deformation mechanisms involving disentanglement and bond rupture. The time dependent structure of the welding interface is determined in terms of the molecular dynamics of the polymer chains, the chemical compatibility, and the fractal nature of diffuse interfaces. Several experimental methods are used to probe the weld structure and compare with theoretical scaling laws, Results are given for symmetric amorphous welds, incompatible and compatible asymmetric amorphous welds, incompatible semicrystalline and polymer-metal welds. The relevance of interface healing studies to thermal, friction, solvent and ultrasonic welds is discussed.  相似文献   

7.
This paper reviews the technology of melt vibration (more specifically at low frequency) to reduce viscosity during processing of plastics and to enhance mechanical performance of the solidified parts. The effect of vibration frequency and amplitude on melt viscosity is explained in terms of shear-thinning criteria. The effect of pressure and temperature on shear thinning is also reviewed to predict how these variables interfere with melt vibration. Practical applications of the principles of melt vibration are provided in injection molding, extrusion and compression molding/thermoforming, from reduction of viscosity to lowering processing temperature and pressure to the elimination of melt defects and weld lines, to the enhancement of mechanical properties, stiffness and strength, by modification of the amorphous and semicrystalline texture and orientational state. Commercially available equipments are reviewed. Results showing the effect of melt vibration during processing for two classical polymers, polystyrene and polypropylene, are discussed. The paper concludes on the remaining challenges to bring the benefits of the new technology to full commercialization.  相似文献   

8.
A pulse pressure was superimposed on the melt flow in extrusion, called vibration extrusion. A die (L/D = 17.5) was attached to this device to study the rheological properties of an amorphous polymer (ABS) and semicrystalline polymer (PP, HDPE), prepared in the vibration field, and the conventional extrusion were studied for comparison. Results show that the melt vibration technique is an effective processing tool for improving the polymer melt flow behavior for both crystalline and amorphous polymers. The enhanced melt rheological property is also explained in terms of shear thinning criteria. Increasing with vibration frequency, extruded at constant vibration pressure amplitude, the viscosity decreases sharply, and so does when increasing vibration pressure amplitude at a constant vibrational frequency. The effect of vibrational field on melt rheological behavior depends greatly on the melt temperature, and the great decrease in viscosity is obtained at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5292–5296, 2006  相似文献   

9.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters in vibration welding are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time. How these parameters affect weld quality, the conditions that result in the best welds, the weldability of dissimilar plastics, and the effect of fillers such as glass are of interest. To address these issues, a research vibration welding machine in which all the parameters can be independently and accurately controlled and monitored was designed and fabricated. The phenomenology of welding, as determined by experiments on the four thermoplastics polycarbonate, poly (butylene terephthalate), polyetherimide, and modified poly (phenylene oxide), is described.  相似文献   

10.
Ultrasonic welding of oriented polypropylene (OPP) using tie-layer materials has been examined. The thermal cycle at the joint interface was evaluated using a high speed data acquisition system, and concurrent changes in horn displacement (penetration) and the output power were monitored. The model explaining process operation involves four phases, i.e., I–where heating occurs because of the stresses generated in asperities on the contacting surfaces; II–where the whole tie-layer reaches the melting point; III–where the polymer melt is subjected to intense heating from viscous dissipation and is squeezed out; and IV–where the joint cools after welding. In the early stages of ultrasonic welding the heat generated at asperities on the contacting surfaces leads to melting of the tie-layer/oriented polypropylene interface within 50 ms. The tie-layer heats up because of a combination of viscoelastic dissipation and heat conduction from the oriented polypropylene/tie-layer interface, and the rate of temperature rise at the midline of the tie-layer is in the range 200°/s to 400°/s. The reduction in thickness of the test specimens (penetration) is negligible up to the time when the tie-layer melts completely, and then changes rapidly when the melted polymer at the joint interface is squeezed out. The influence of machine parameters (amplitude and contact pressure) and of tie-layer Melt Flow Index is also examined. The total time required for completion of the welding process decreases when the amplitude and applied pressure are increased. The use of low Melt Flow Index tie-layers produces peak temperature as high as 600° at the bondline, and little material is ejected during the ultrasonic welding operation.  相似文献   

11.
This paper describes an investigation into some fundamental aspects of ultrasonic welding of thermoplastics. A simple model was developed to characterize the temperature rise at the weld interface up to the glass transition temperature. Beyond this point, the temperature increases more rapidly and almost directly proportional to weld time. The rate of temperature rise increases with increase of amplitude of vibration. The correlation between weld strength and interface temperature was established using the method of dimensional analysis. It was found that the process can be optimized in terms of weld strength by monitoring the power input. There is an optimal load one can apply to achieve high weld strength. The overall efficiency of the process is rather low in terms of energy usage.  相似文献   

12.
Some Characteristics of Ultrasonic Welding of Polymers   总被引:1,自引:0,他引:1  
Ultrasonic mechanical vibrations are usually introduced perpendicular to the welded surfaces, which coincides with the direction of the clamping force. The characteristics of the physical processes in ultrasonic welding (USW) of polymers cause heating of the parts to occur primarily at the site of their contact. For this reason, it is possible to form a high-quality weld at a lower temperature than with other kinds of welding. In some cases, USW of polymer parts is even possible at a temperature below their pour point (melting point), which allows obtaining welded articles made from different polymers and welding polymers whose degradation temperature is comparable to or lower than the melting point [fluoroplastic, poly(ethylene terephthalate)]. One of the most important characteristics of USW is the possibility of forming a high-quality weld at a relatively large distance from the site of introduction of mechanical energy, which allows obtaining sufficiently strong welded joint in articles of very complicated design. The possibility of manufacturing welded joints of polymers with contaminated surfaces significantly expands the range of application of USW, as it can be used for hermetic sealing of polymer containers filled with finished products. USW allows industrial production of nonwoven cloth both from purely thermoplastic polymer fibers and from blends with natural or other chemical fibers.  相似文献   

13.
An experimental study of the heating and bonding mechanisms in ultrasonic welding is described. Polystyrene specimens were joined under a variety of welding conditions while the temperatures at the interface and within the interior of these specimens were measured. The power input, amplitude of vibrations, and amount of deformation during welding were measured concurrently. In general, the rate of heating at the interface is greatest at the beginning of the weld cycle, but slows markedly after the interface temperature reaches approximately 250°C. The interface temperature peaks well before the weld is completed. Temperatures within the body increase most rapidly at temperatures near the glass transition temperature. Welded specimens were broken on a special testing apparatus under combined torsional and compressional loads to determine the weld strength. The results show that weld strength is dependent on the amount of energy input and the degree to which material flows out of the interface region. Possible mechanisms for heating and bonding during ultrasonic welding are discussed in light of the observed behavior.  相似文献   

14.
Microcellular semicrystalline polymers such as poly(ethylene terephthalate) show great promise for engineering applications because of their unique properties, particularly at higher densities. Recent studies reveal some high density microcellular polymers have longer fatigue lives and/or equal strengths to the neat polymer. Relatively few microcellular processing studies of semicrystalline polymers have been presented. In general, semicrystalline polymers are relatively difficult to microcellular process compared to amorphous polymers. In this paper and a companion paper, the microcellular processing of poly(ethylene terephthalate) in the amorphous and semicrystalline states is studied in order to quantify the processing differences. The microcellular processing steps addressed in this paper include gas/polymer solution formation and microvoid nucleation. Particular emphasis is given to microvoid nucleation comparing the processing characteristics of semicrystalline and amorphous materials. Moreover, this study identifies a number of critical process parameters. In general, the semicrystalline materials exhibit ten to one thousand times higher cell nucleation densities compared with the amorphous materials, resulting from heterogeneous nucleation contributions. The amorphous materials show a strong dependence on cell density, while the semicrystalline materials show a weaker dependence. Moreover, classical nucleation theory is not adequate to quantitatively predict the effects of saturation pressure on cell nucleation for either the amorphous or semicrystalline polyesters. Both the semicrystalline and amorphous materials exhibit constant nucleation cell densities with increasing foaming time. Foaming temperatures near the glass transition are found to influence the cell density of the amorphous polyesters, indicating some degree of thermally activated nucleation. Furthermore, classical nucleation theory is not adequate to predict the cell density dependence on foaming temperature. Similar to the amorphous polyesters above the glass transition temperature, nucleation in the semicrystalline materials is found to be independent of the foaming temperature.  相似文献   

15.
Ultrasonic welding of PEEK graphite APC-2 composites   总被引:1,自引:0,他引:1  
The ultrasonic welding process is modeled using a five part model that includes mechanics and vibration of the parts, viscoelastic heating, heat transfer, flow and wetting, and intermolecular diffusion. The model predicts that melting and flow occur in steps, which has been confirmed by experiments. The model also indicates the possibility of monitoring joint quality by measuring the dynamic mechanical impedance of the parts during welding, which has also been verified experimentally by indirectly monitoring the magnitude of the impedance. via measurements of both the power and the acceleration of the base. When the melt fronts of the energy directors meet, at the end of welding, the dynamic impedance of the composites' interface is shown to rise rapidly. This raises the possibility of developing closed loop control procedures for the ultrasonic welding of thermoplastic composites. Ultrasonic welding of polyetheretherketone (PEEK) graphite APC-2 composites produced joints with excellent strengths.  相似文献   

16.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time or weld penetration.; The effects of these parameters on weld quality were systematically studied by first butt welding thermoplastic specimens under controlled conditions, over a wide range of process parameters, and by then determining the strengths and ductilities of these welds by tensile tests. The three thermoplastics investigated are poly (butylene terephthalate), polyetherimide, and modified polyphenylene oxide. Changes in the weld pressure are shown to have opposite effects on the strengths of polyetherimide and modified polyphenylene oxide welds; Also, the weld frequency is shown to have a significant effect on the weldability of polyetherimide. The weldability data for these three thermoplastics are compared with data for polycarbonate. Under the right conditions, the strengths of butt welds in these materials are shown to equal the strength of the virgin polymer.  相似文献   

17.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time or weld penetration; The effects of these parameters on weld quality were systematically studied by first butt-welding polycarbonate specimens under controlled conditions over a wide range of process parameters, and by then determining the strengths and ductilities of these welds by tensile tests, A significant result is the apparent existence of a weld-penetration threshold above which high weld strengths are attained, but below which the strength drops off. Under the right conditions, the strengths of polycarbonate butt welds are shown to equal the strength of the virgin polymer.  相似文献   

18.
为研究超声换能器结构参数对聚合物超声塑化过程黏弹性生热的影响,首先确定超声黏弹性生热系统的组成,进行纵振超声换能器结构设计;然后分析超声黏弹性生热过程及超声黏弹性生热原理;最后采用单一变量法分析超声换能器的主要结构参数对其纵振频率及工具头前端质点最大振幅的影响,将其实际输出的纵振激励加载于熔融聚合物,研究其结构参数对聚合物超声黏弹性生热过程及达到聚合物玻璃化转变温度所用时间的影响。结果表明,随纵振激励作用时间的增加,聚合物温度非线性升高;放大比对聚合物温度变化影响最大,前盖板厚度和工具头长度次之,影响最小的是变幅杆长度。  相似文献   

19.
Short welding times make spin welding particularly suitable for mass production. This paper presents an analysis of the friction phase, which makes it possible to estimate the influence of the welding parameters and the material being welded on the temperature in the welded zone, the melt rate, and the torque in the spin welding of semicrystalline thermoplastics. A comparison of experimental and calculated results shows an acceptable correlation. In addition, the influence of speed, axial pressure, and braking on the weld seam quality of different amorphous and semicrystalline thermoplastics is discussed.  相似文献   

20.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. Past work on welding characterized the effects of weld parameters such as the weld frequency, the weld pressure, and the weld time, on the welding process and weld strength, and showed that the most important parameter affecting weld strength Is the weld penetration—the decrease in the distance between the parts being welded that is caused by lateral outflow of material in the molten film. However, those weld studies were based on specimens of constant nominal thickness (6.35 mm, 0.25 in). This paper is concerned with the effects of specimen thickness on the weld process and weld strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号