首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a new computerized procedure for dealing with the design of horizontal ground heat exchangers (HGHE). The computer program is based on the transient model of coupled nonlinear partial differential equations governing heat and mass flow in soils. The model is two-dimensional and delineates the operation of ground heat storage with the HGHE and such phenomena as freezing/thawing and drying/rewetting of soil moisture. Comprehensive climatological data, such as ambient temperature, solar radiation, wind velocity, rainfall, snowfall, snow characterstics, and water vapour pressure is used to simulate conditions at the ground surface over any required length of time. The package can be applied to any geographical location by changing climatic and soil data input. The designer has the possibility of selecting any of 12 types of soils from sand to clay, 12 commercial heat pumps, nine different configurations of the HGHE, 16 plastic pipes for ground coils, and 13 ground coil fluids. The program, however, does not calculate the length of the HGHE but it evaluates the thermodynamic performance of a ground heat pump system and provides comprehensive data on thermal and hydraulic conditions in ground heat storage. The length of the ground heat exchanger is obtained from a line source theory model or from site dimensions and pipe spacing. Computed results for ground heat exchanger operation correlate fairly well with experimental data. Simulation of temperature and moisture content in the ground for natural conditions (no heat extraction/deposition) showed a fair agreement with field data. The entire computer program is user-friendly, interactive, menu-driven, and written in FORTRAN 77.  相似文献   

2.
Christopher J. Wood  Hao Liu  Saffa B. Riffat   《Energy》2010,35(12):4932-4940
Novel methods are sought to provide greater efficiency of the installation of ground heat exchangers for GSHPs (ground source heat pumps) in domestic buildings. An economically viable option is to utilise concrete foundation piles as ground heat exchangers. The objective of this study is to investigate the operation of utilising a piled foundation structure as a ground heat exchanger. A test plot of 72 m2 (ground floor area) was produced with 21 × 10 m deep concrete piles, with a single U tube pipe in each. Ground heat was extracted by a heat pump with the heat loading being varied in line with the date and the average air temperature. Over the 2007/2008 heating season this study had investigated the temperature changes in the foundation piles and the surrounding ground in addition to the heat pump operational performance. The temperature changes observed in the region of the test plot were compared with variations naturally experienced in the ground due to the seasonal climatic influence. The SPF (seasonal performance factor) of the heat pump was 3.62 and the ground temperature at a distance of 5 m from the test plot was seen to be undisturbed by the heat extraction and followed the predicted seasonal variation.  相似文献   

3.
The energy analysis of ground source heat pump systems is based on the instantaneous fluid temperature at the ground heat exchanger outlet. This temperature defines the ground source heat pump coefficient of performance (COP) and hence the electricity consumption required in order to fulfill the energy demands of the building. The aim of this work is to present a model able to predict the fluid temperature at the ground heat exchanger outlet, taking into account the heat transfer phenomena in the soil and the temporal variation of the thermal load of the ground heat exchanger. The model developed was verified using experimental data, expanding over a three years period, of a vertical ground heat exchanger. It is proved that the model is able to satisfactorily predict the recorded temperature values throughout the verification period. The differences between measured and estimated outlet water temperatures impose a deviation between the estimated and the actually recorded electricity consumption of less than 4%.  相似文献   

4.
Validation of ground heat exchanger (GHE) model is presented using the experimental data obtained for both single and double pipe horizontal GHE. Sensitivity analysis of the GHE model shows the influence of the variation in the soil thermal conductivity, specific heat and density on the thermal performance of a GHE. Finally, the thermal performance of a GHE is analysed using both heat and mass transfer models, and conduction only model, as well as the influence of the initial soil moisture content on the thermal performance of a GHE. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
C.K. Lee  H.N. Lam 《Renewable Energy》2008,33(6):1286-1296
Computer simulation of borehole ground heat exchangers used in geothermal heat pump systems was conducted using three-dimensional implicit finite difference method with rectangular coordinate system. Each borehole was approximated by a square column circumscribed by the borehole radius. Borehole loading profile calculated numerically based on the prescribed borehole temperature profile under quasi-steady state conditions was used to determine the ground temperature and the borehole temperature profile. The two coupled solutions were solved iteratively at each time step. The simulated ground temperature was calibrated using a cylindrical source model by adjusting the grid spacing and adopting a load factor of 1.047 in the difference equation. With constant load applied to a single borehole, neither the borehole temperature nor the borehole loading was constant along the borehole. The ground temperature profiles were not similar at different distances from the borehole. This meant that a single finite difference scheme was not sufficient to estimate the performance of a borefield by superposition. The entire borefield should be discretized simultaneously. Comparison was made between the present method and the finite line source model with superposition. The discrepancies between the results from the two methods increased with the scale of borefield. The introduction of time schedule revealed a discrepancy between the load applied to the ground heat exchanger and that transferred from the borehole to the ground, which was usually assumed to be the same when using analytical models. Hence, in designing a large borefield, the present method should give more precise results in dynamic simulation.  相似文献   

6.
Thorough characterization of the spatiotemporal variability in soil thermal properties can facilitate better designs for horizontal geothermal heat pump (HGHP) systems by reducing ground heat exchanger (GHEX) costs. Results are presented from a new monitoring network installed across a range of glaciated terrains in Indiana (USA), including the first known observations of the dynamic range of thermal conductivity that occurs at the depth of horizontal GHEX installations. In situ thermal conductivity data can vary significantly on a seasonal basis in coarse-grained outwash sediments (0.8–1.4 W m−1 K−1), whereas clay- and silt-dominated moraine sediments have a dampened seasonal range within 10% of the annual mean. Thermal conductivity across the network ranges from 0.8 to 2.0 W m−1 K−1 depending on soil parent material, climatic setting, and particularly, soil-moisture variability. Results indicate that the standard industry practice to estimate thermal properties from soil type often leads to suboptimal GHEX design (i.e., GHEX design lengths were 44–52% longer than necessary to meet performance specifications). This research suggests that expanding the characterization of soil thermal properties in specific settings where HGHPs are targeted will improve understanding of the dynamic aspects of ground heat exchange and lead to more optimal HGHP system designs.  相似文献   

7.
A high-efficiency ground heat exchanger has been developed for use with ground-source heat pumps. The exchanger is made of copper tubing, shaped in the form of a spiral, which can be installed in a vertical borehole backfilled with sand. Thermal performance of a full-scale prototype indicated that this heat exchanger can achieve very high heat extraction rates if subfreezing operating temperatures are used. For most soil types cyclic freezing and thawing is not a problem; however, for the sensitive Leda clay in which the prototype tests were conducted, substantial settlement occurred after the first freeze-thaw cycle owing to initial collapse of the soil structure.  相似文献   

8.
对不同管间距的垂直U型地埋管进行了夏季工况连续实验,比对单U地埋管换热器不同管间距下的单位井深换热量、管群内土壤温度变化和系统运行情况,结果表明,管间距越大,单U换热器和土壤之间换热效果越好,管群内的热干扰越弱;管间距过小,系统内换热器的换热情况将恶化,导致不能长期稳定运行。  相似文献   

9.
Ground heat exchangers have vital importance for ground source heat pump applications. Various configurations tried to improve heat transfer in the soil. A new kind of aluminium finned pipe buried in the soil for this aim. In order to compare effectiveness of the Al finned pipe over the traditional PPRC pipe an experimental study carried out. The experimental GSHP system was installed at Y?ld?z Technical University Davupasa Campus on 800 m2 surface area with no special surface cover. Temperature data were collected using thermocouples buried in soil horizontally and vertically at various distances from the pipe center and at the inlet and the outlet of the ground heat exchanger. Experimental results were compared with results from analytical study. To compare effectiveness of the Al finned pipe and PPRC pipe a new parameter defined as transferred amount of heat per unit mass of working fluid per unit time for this aim. It is found that Al finned pipe has higher heat transfer values than the traditional PPRC pipe.  相似文献   

10.
Viorel Badescu   《Renewable Energy》2007,32(5):845-855
This paper develops previous research on passive house (PH) space heating. A simple and accurate ground heat exchanger model is developed. It is based on a numerical transient bi-dimensional approach that allows to computing the ground temperature at the surface and at various depths. The new model was integrated into the existing theoretical approach and implemented within the computer code used to simulate the heating system operation in Pirmasens PH (Rhineland Palatinate, Germany). The heating and cooling potential of the system under real climatic conditions was investigated. The energy delivered by the ground heat exchanger depends significantly on different design parameters like pipe's depth, diameter and material.  相似文献   

11.
土壤源热泵的研究与开发   总被引:3,自引:0,他引:3  
土壤源热泵是利用地下土壤能源资源来进行供暖空调的一种高效、节能、环保型空调技术,近年来得到了快速的发展;文章介绍了它的国内外研究状况,分析了土壤的传热特性、土壤的温度分布状况及埋地盘管的传热特性,建立了埋地盘管的传热数学模型,指出了土壤源热泵研究与发展中的关键性问题,最后展望了其应用前景。  相似文献   

12.
Heat transfer analysis of boreholes in vertical ground heat exchangers   总被引:3,自引:0,他引:3  
A ground heat exchanger (GHE) is devised for extraction or injection of thermal energy from/into the ground. Bearing strong impact on GHE performance, the borehole thermal resistance is defined by the thermal properties of the construction materials and the arrangement of flow channels of the GHEs. Taking the fluid axial convective heat transfer and thermal “short-circuiting” among U-tube legs into account, a new quasi-three-dimensional model for vertical GHEs is established in this paper, which provides a better understanding of the heat transfer processes in the GHEs. Analytical solutions of the fluid temperature profiles along the borehole depth have been obtained. On this basis analytical expressions of the borehole resistance have been derived for different configurations of single and double U-tube boreholes. Then, different borehole configurations and flow circuit arrangements are assessed in regard to their borehole resistance. Calculations show that the double U-tubes boreholes are superior to those of the single U-tube with reduction in borehole resistance of 30-90%. And double U-tubes in parallel demonstrate better performance than those in series.  相似文献   

13.
In some cold areas, the system performance of the soil source heat pump system is reduced by the decreasing underground soil temperature, which is caused by the thermal imbalance between the heating demand in winter and the cooling demand in summer. Soil heat charging with solar energy in non-heating seasons is proposed for solving the problem. It has been found from previous studies that the effect of the moisture transfer on the heat transfer within porous media could not be neglected especially under higher temperature difference. Therefore, this paper provides an investigation on the heat and moisture transfer in soil during soil heat charging at high temperature. A numerical model is developed for the study. The simulation results are compared with the testing data from the authors' previous study for the model verification. Based on the verified model, the performance of the heat and moisture transfer in soil during soil heat charging in a longer time and a larger area is investigated in the paper. The results show that the testing data match very well with the simulation results within a relative error of ±9% and the mathematical model is reliable for the performance prediction of heat and moisture transfer in soil heat charging. The soil volumetric water content (VWC) distribution tends to be stable after soil heat charging for 13 days and the heat source has an effective influence on soil VWC distribution within 2.4?m. The effect of the heat source temperature and initial VWC on the soil temperature and VWC distribution and heat power is proved to be obvious. Loam has a better performance in soil heat charging than sand.  相似文献   

14.
Heat transfer around vertical ground heat exchanger (GHE) is a common problem for the design and simulation of ground coupled heat pump (GCHP). In this paper, an updated two-region vertical U-tube GHE analytical model, which is fit for system dynamic simulation of GCHP, is proposed and developed. It divides the heat transfer region of GHE into two parts at the boundary of borehole wall, and the two regions are coupled by the temperature of borehole wall. Both steady and transient heat transfer method are used to analyze the heat transfer process inside and outside borehole, respectively. The transient borehole wall temperature is calculated for the soil region outside borehole by use of a variable heat flux cylindrical source model. As for the region inside borehole, considering the variation of fluid temperature along the borehole length and the heat interference between two adjacent legs of U-tube, a quasi-three dimensional steady-state heat transfer analytical model for the borehole is developed based on the element energy conservation. The implement process of the model used in the dynamic simulation of GCHPs is illuminated in detail and the application calculation example for it is also presented. The experimental validation on the model is performed in a solar-geothermal multifunctional heat pump experiment system with two vertical boreholes and each with a 30 m vertical 1 1/4 in nominal diameter HDPE single U-tube GHE, the results indicate that the calculated fluid outlet temperatures of GHE by the model are agreed well with the corresponding test data and the guess relative error is less than 6%.  相似文献   

15.
This paper describes experiments and analyses on an improved underground heat exchanger by using a no-dig method for the purpose of the cost reduction of a space heating and cooling system using underground thermal energy. First, the improved underground heat exchanger was installed on the campus of Hokkaido University, and it was shown that a ground source heat pump system utilizing the heat exchanger was sufficient for space heating and cooling. Second, evaluation program of the heat exchanger was developed, and the program was verified to give good predictions by comparing with experimental results. As a result of system simulations, an energy reduction for a system installation relative to a conventional vertical earth heat exchanger reached 78%. The primary energy reduction rate including the system installation and operation relative to a typical air source heat pump was 29%.  相似文献   

16.
地源热泵间歇制热运行的试验研究   总被引:3,自引:1,他引:2  
地下埋管内的水温主要与埋管换热器的长度、地下土壤温度、土壤的热物性及系统运行模式等因素有关.系统最佳运行模式对于地下温度场的恢复、系统运行优化以及减少埋管换热器的造价都有重要意义.文章通过人为控制机组的运行模式,探求连续运行及间歇运行模式下埋管换热器内水温变化规律,以期找到地下换热系统运行优化的最佳手段.  相似文献   

17.
Ground heat exchanger design tools have become increasingly important for the sizing of energy-efficient heating and cooling systems. Most such heat exchanger design tools incorporate a simulation that uses both long and short timesteps (a “hybrid timestep” procedure). Current tools typically expect engineers to exercise judgment to determine the magnitude and duration of the shorter timestep. This paper proposes an accurate and efficient methodology for developing this hybrid timestep formulation, which is validated against hourly simulations for a set of three building types. Overall, the method performs well for design purposes, with the error in ground heat exchanger sizing averaging less than 1% and always less than 8%.  相似文献   

18.
Recently, researchers are focussing on using ground coupled heat pump systems as a heat source or sink rather than air source heat pumps for HVAC needs due to the stable temperature and the high thermal inertia of the soil. The investment cost of these systems is too expensive therefore the precise thermal analysis, design and parameter optimization are essential. For an accurate design, the maximum of physical phenomena such as: axial effects, seasonal effects, underground water flow and BHE dynamic behaviour must be accounted for in order to reflect exactly the real physical situation. In the present paper thermal interferences are investigated under seasonal effects and a dynamic heat flux for a vertical coaxial borehole heat exchangers field. This enables to avoid thermal interferences by predicting efficient period of operation corresponding to the beginning of the studied phenomena (interferences) for a given separation distance between two boreholes. To reach this purpose, as a first step, a transient 2D Finite volume method (FVM) for a single borehole heat exchanger was built using MATLAB, which accounts for accurate axial and seasonal effects and a dynamic heat flux that is function of depth and time. This model has been validated against the Finite Line Source (FLS) analytical solution and good agreement between analytical and numerical methods has been obtained. Then the model has been extended to a quasi-3D model in order to investigate thermal interferences between two neighbouring boreholes. After 500 h and at the mid-point of the separating distance (1.5 m) where interferences are the strongest, the temperature is 50% (6.64 °C) lower than the case where there are no interferences.  相似文献   

19.
Liu Jun  Zhang Xu  Gao Jun  Yang Jie 《Renewable Energy》2009,34(12):2898-2904
Total thermal resistance of ground heat exchanger (GHE) is comprised of that of the soil and inside the borehole. The thermal resistance of soil can be calculated using the linear source theory and cylindrical source theory, while that inside the borehole is more complicated due to the integrated resistance of fluid convection, and the conduction through pipe and grout. Present study evaluates heat exchange rate per depth of GHE by calculating the total thermal resistance, and compares different methods to analyze their similarities and differences for engineering applications. The effects of seven separate factors, running time, shank spacing, depth of borehole, velocity in the pipe, thermal conductivity of grout, inlet temperature and soil type, on the thermal resistance and heat exchange rate are analyzed. Experimental data from several real geothermal heat pump (GHP) applications in Shanghai are used to validate the present calculations. The observations from this study are to provide some guidelines for the design of GHE in GHP systems.  相似文献   

20.
The HVAC systems utilizing renewable energy sources are one of the main contributors towards the fossil fuel dependency reduction. Among these, the ground source heat pump systems, especially those based on vertical ground heat exchanger, are very attractive, due to their high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号