共查询到20条相似文献,搜索用时 11 毫秒
1.
Mengxian Ding Haiying Li Zhenhua Yang Yuesheng Li Jin Zhang Xuqiang Wang 《应用聚合物科学杂志》1996,59(6):923-930
1,4-Bis(2,3-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride, bis(2,3-dicarboxyphenoxy)sulfide dianhydride, bis(3,4-dicarboxyphenoxy)sulfide dianhydride, and 2,3,3′,4′-tetracarboxy diphenyl sulfide dianhydride were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. Bis(2,3-dicarboxyphenyl)sulfone and bis(3,4-dicarboxyphenyl)sulfone were obtained by the oxidation of the corresponding bis(dicarboxyphenyl)sulfide by hydrogen peroxide. The polyimides from the dianhydrides mentioned above and 4,4′-oxydianiline were prepared. The properties, such as dynamic mechanical behavior, thermooxidative stability, stress-strain behavior, chemical resistance, and permeability to some gases have been in investigated for the isomeric polyimides. © 1996 John Wiley & Sons, Inc. 相似文献
2.
D. Likhatchev L. Alexanrova M. Tlenkopatchev A. Martinez-Richa R. Vera-Graziano 《应用聚合物科学杂志》1996,61(5):815-818
The feasibility of using a one-step high-temperature polycondensation for the synthesis of aromatic polyimides, based on 4,4′-diaminotriphenylmethane (DA-TPM), was studied. It was found that the reaction of DA-TPM with various aromatic dianhydrides in nitrobenzene at 180–200°C resulted in the formation of the high molecular weight soluble polyimides, PI-TPM. The reaction solutions cooled to ambient temperature were used for casting films. These PI-TPM films significantly exceeded their prototypes obtained by the thermal imidization of poly(amic acids) in terms of solubility and tensile properties. All studied polyimides demonstrated well-distinguished glass transition at 260–320°C. © 1996 John Wiley & Sons, Inc. 相似文献
3.
W. M. Alvino 《应用聚合物科学杂志》1975,19(3):651-663
The polymerization of 4-chloroformylphthalic anhydride with 4,4′-diaminodiphenyl ether was investigated under a variety of reaction conditions. Both interfacial and solution techniques were used, with the latter method yielding the highest molecular weight polymer. Synthesis of high molecular weight polyamide-imides requires the use of pure monomers, exclusion of moisture, and proper stoichiometry. Molecular weight control can be achieved by the addition of either aniline or phthalic anhydride. Heating of the resin solution for 1 hr at temperatures ≥ 50°C results in a large decrease in inherent viscosity as well as in the polymer properties. Tertiary amines such as triethylamine, when added to the precursor solution, markedly influence the viscosity of the resin. 相似文献
4.
Aromatic polyamides and polyimides were synthesized from 4,4′-diaminotriphenylmethane (DA-TPM) for studying their solubility, thermal, and mechanical properties. The polymers were found to be soluble in amide solvents and pyridine, and this could be attributed to the practically free rotation of the polymer chain segments around the bridging group within the DA-TPM and the effect of its pendant phenyl ring. The polyimides and polyamides exhibited well-distinguished glass transition in the range of temperatures, which is typical for flexible-chain polymers. For the polyimides, significant differences in solubility and mechanical properties were observed between the samples prepared by chemical and thermal imidization of poly(amic acids). Thermal imidization brought about remarkably less soluble brittle films. © 1995 John Wiley & Sons, Inc. 相似文献
5.
Four kinds of 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA)-pyromelliitic dianhydride (PMDA) alternating polyimide (BTDA-PMDA API) were obtained by reacting 1 mol BTDA with 2 mol diamines to form BTDA chain-extended diamines (BTDA CED), followed by the addition of 1 mol PMDA to yield the BTDA-PMDA alternating polyamic acids (BTDA-PMDA APA), and finally by imidizing them thermally. BTDA CED were characterized by elemental analysis, infrared (IR), and 1H-NMR spectroscopy. The structures of BTDA-PMDA APA and BTDA-PMDA API were investigated by IR and 1H-NMR spectroscopy, and their thermal properties and interfacial tension were also studied. Furthermore, the characteristic properties of BTDA-PMDA API were compared with their corresponding homopolyimides from BTDA (BTDA HPI) and from PMDA (PMDA HPI). It was found that the alternating condensation polymerization is an effective method to modify polyimides interfacial tension with a small influence on the thermal stability. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1585–1593, 1997 相似文献
6.
Jyh‐Chien Chen Kuppachari Rajendran Ya‐Hui Chang Sheng‐Wen Huang Yaw‐Tern Chern 《应用聚合物科学杂志》2011,120(6):3159-3170
Polypyrrole (PPy) and Polypyrrole‐ZnO (PPy‐ZnO) nanocomposites were electrodeposited on mild steel and its corrosion protection ability was studied by Tafel and Impedance techniques in 3.5% NaCl solution. Pure Polypyrrole film was not found to protect the mild steel perfectly but the coating with nano‐sized ZnO (PPy‐ZnO) has dramatically increased the corrosion resistance of mild steel. Electrochemical Impedance Spectroscopy (EIS) measurements indicated that the coating resistance (Rcoat) and corrosion resistance (Rcorr) values for the PPy‐ZnO nanocomposite coating was much higher than that of pure PPy coated electrode. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
7.
A series of polyimides were prepared from 2,3,2′,3′‐oxydiphthalic anhydride (3,3′‐ODPA) with various aromatic diamines via three different synthetic procedures. The one‐step and two‐step methods with the thermal imidization of poly(amic acids) (PAAs) yielded polyimides with a relatively low inherent viscosity; these produced brittle films. The polyimides prepared by the two‐step method via the chemical imidization of PAA precursors exhibited a higher inherent viscosity and afforded tough and creaseable films. All the 3,3′‐ODPA based polyimides had a significantly higher solubility than the corresponding polyimides from 3,4,3′,4′‐oxydiphthalic anhydride. The films cast from 3,3′‐ODPA polyimides also showed high optical transparencies and less color, with an ultraviolet–visible absorption edge of 370–397 nm and low yellowness index values of 11.3–29.8. These polyimides exhibited glass‐transition temperatures in the range 211–289°C and showed no significant decomposition below 500°C under nitrogen or air atmospheres. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1352–1360, 2005 相似文献
8.
The effect of different synthesis routes on the chemical and molecular order of polyimides based on 4,4′-diaminotripenylmethane (DA-TPM) and various aromatic dianhydrides (PI-TPM) was studied by solid-state carbon-13 nuclear magnetic resonance (13C-NMR). Polyimides were prepared by three different methods including a two-step procedure with either thermal or chemical imidization of precursor poly(amic acid)s (PAA) and one-step high-temperature polycondensation in phenolic solvents. Model compounds were also obtained and used in the assignment of the NMR signals. The NMR spectra for PI-TPMs obtained by one-step high-temperature polycondensation and—to a lesser extent—by thermal imidization of PAA, show sharper lines than those observed in the spectra of polymers prepared from PAA via chemical imidization. These differences are due mainly to the lower degree of ordering of the latter polyimides. WAXD patterns of polyimide films also indicated a less-ordered structure of the polymers resulting from the chemical imidization of PAA. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1053–1064, 1998 相似文献
9.
New polyimides with enhanced thermal stability and high solubility were synthesized in common organic solvents from a new dianhydride, 2,2′‐dibromo‐4,4′,5,5′‐benzophenone tetracarboxylic dianhydride (DBBTDA). DBBTDA was used as monomer to synthesize polyimides by using various aromatic diamines. The polymers were characterized by IR and NMR spectroscopy and elemental analysis. These polyimides had good inherent viscosities in N‐methyl‐2‐pyrrolidinone (NMP) and also high solubility and excellent thermo‐oxidative stability, with 5 % weight loss in the range 433 to 597 °C. Copyright © 2004 Society of Chemical Industry 相似文献
10.
Jyh‐Chien Chen Yuan‐Tsai Liu Chyi‐Ming Leu Hsueh‐Yi Liao Wen‐Chin Lee Tzong‐Ming Lee 《应用聚合物科学杂志》2010,117(2):1144-1155
Two new aromatic diamines, 2,2′‐dibromo‐4,4′‐oxydianiline (DB‐ODA 4 ) and 2,2′,6,6′‐tetrabromo‐4,4′‐oxydianiline (TB‐ODA 5 ), have been synthesized by oxidation, bromination, and reduction of 4,4′‐oxydianiline (4,4′‐ODA). Novel polyimides 6a–f and 7a–f were prepared by reacting DB‐ODA ( 4 ) and TB‐ODA ( 5 ) with several dianhydrides by one‐step method, respectively. The inherent viscosities of these polyimides ranged from 0.31 to 0.99 dL/g (0.5 g/dL, in NMP at 30°C). These polyimides showed enhanced solubilities compared to those derived from 4,4′‐oxydianiline and corresponding dianhydrides. Especially, polyimides 7a , derived from rigid PMDA and TB‐ODA ( 5 ) can also be soluble in THF, DMF, DMAc, DMSO, and NMP. These polyimides also exhibited good thermal stability. Their glass transition temperatures measured by thermal mechanical analysis (TMA) ranged from 251 to 328°C. When the same dianhydrides were used, polyimides 7 containing four bromide substituents had higher glass transition temperatures than polyimides 6 containing two bromide substituents. The effects of incorporating more polarizable bromides on the refractive indices of polyimides were also investigated. The average refractive indices (nav) measured at 633 nm were from 1.6088 to 1.7072, and the in‐plane/out‐of‐plane birefringences (Δn) were from 0.0098 to 0.0445. It was found that the refractive indices are slightly higher when polyimides contain more bromides. However, this effect is not very obvious. It might be due to loose chain packing resulted from bromide substituents at the 2,2′ and 2,2′,6,6′ positions of the oxydiphenylene moieties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
11.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007 相似文献
12.
We report a new method for the preparation of asymmetric diamines using 4,4′‐oxydianiline (4,4′‐ODA) as the starting material. By controlling the equivalents of bromination agent, N‐bromosuccinimide, we were able to attach bromide and phenyl substituents at the 2‐ or 2,2′,6‐positions of 4,4′‐ODA. Thus, four new asymmetric aromatic diamines, 2‐bromo‐4,4′‐oxydianiline (6), 2,2′,6‐tribromo‐4,4′‐oxydianiline (7), 2‐phenyl‐4,4′‐oxydianiline (8) and 2,2′,6‐triphenyl‐4,4′‐oxydianiline (9), were synthesized by this method. Their structural asymmetry was confirmed using 1H NMR spectroscopy. Asymmetric polyimides (PI10–PI13) were prepared from these diamines and three different dianhydrides (pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride) in refluxing m‐cresol. The formed polyimides, except PI10a derived from 6 and PMDA, were all soluble in m‐cresol without premature precipitation during polymerization. These polyimides with inherent viscosity of 0.41–0.96 dL g?1, measured at a concentration of 0.5 g dL?1 in N‐methyl‐2‐pyrrolidone at 30 °C, can form tough and flexible films. Because of the structural asymmetry, they also exhibited enhanced solubility in organic solvents. Especially, polyimides PI11a and PI13a derived from 7 and 9 with rigid PMDA were soluble in various organic solvents at room temperature. The structural asymmetry of the prepared polyimides was also evidenced from 1H NMR spectroscopy. In the 1H NMR spectrum of PI11a, the protons of pyromellitic moiety appeared in an area ratio of 1:2:1 at three different chemical shifts, which were assigned to head‐to‐head, head‐to‐tail and tail‐to‐tail configurations, respectively. These polyimides also exhibited good thermal stability. Their glass transition temperatures ranged from 297 to 344 °C measured using thermal mechanical analysis. © 2013 Society of Chemical Industry 相似文献
13.
Epoxy resins based on 4,4′-dihydroxydiphenylsulfone (DGEBS) and diglycidyl ether of bisphenol A (DGEBA) were prepared by alkaline condensation of 4,4′-dihydroxydiphenylsulfone (bisphenol S) with epichlorohydrin and by recrystallization of liquid, commercial bisphenol A-type epoxy resin, respectively. Curing kinetics of the two epoxy compounds with 4,4′-diaminodiphenylmethane (DDM) and with 4,4′-diaminodiphenylsulfone (DDS) as well as Tg values of the cured materials were determined by the DSC method. It was found that the ? SO2? group both in the epoxy resin and in the harener increases Tg values of the cured materials. DGEBS reacts with the used hardeners faster than does DGEBA and the curing reaction of DGEBS begins at lower temperature than does the curing reaction of DGEBA when the same amine is used. © 1994 John Wiley & Sons, Inc. 相似文献
14.
As one member of high performance fibers, aromatic polyimide fibers possess many advantages, such as high strength, high modulus, high and low temperature resistance, and radiation resistance. However, the preparation of the high performance fibers is so difficult that the commercial fibers have not been produced except P84 with good flame retardancy. In this report, a polyimide was synthesized from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydianiline (ODA) and the fibers were prepared from its solution by a dry‐jet wet‐spinning process. The formation of the as‐spun fibers in different coagulation bath composition was discussed. Scanning electron microscope (SEM) was employed to study the morphology of the as‐spun fibers. As a result, the remnant solvent existed in the as‐spun fibers generated from coagulation bath of alcohol and water. There were many fibrils and microvoids with the dimension of tens of nanometers in the fibers. One could observe the obvious fibrillation and the drawn fibers. The measurement for the mechanical properties of the fibers with a drawing ratio of 5.5 indicated that tensile strength and initial modulus were 2.4 and 114 GPa, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 669–675, 2004 相似文献
15.
Having previously demonstrated that the polyimide derived from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 1,2‐bis(4‐aminophenoxy)benzene [termed triphenyl ether catechol diamine (TPEC)] exhibited superior tensile properties in addition to good thermal properties, we now provide a preliminary assessment of the properties of the copolyimides prepared from BPDA, TPEC, and another aromatic diamine. The homopolyimides derived from BPDA and many aromatic diamines generally possessed good mechanical properties and thermal properties; however, they were insoluble in available organic solvents. In several cases, organosoluble BPDA copolyimides could be prepared from BPDA and equimolar mixtures of TPEC and another aromatic diamine. All the copolyimides could be formed into tough films with high moduli and strengths and, in most cases, high extensions to break. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 351–358, 2002; DOI 10.1002/app.10342 相似文献
16.
The paper describes the successful synthesis of silicon containing bismaleimide resin 4,4′-carbo(4,4′-bismaleimido phenoxy)diphenyl silane. The char yield of the bismaleimide resin in N2 atmosphere was found to be 55% at 800°C. Chain extension of bismaleimide with 4,4′-diamino diphenyl sulfone reduced the char yield and thermal stability. 相似文献
17.
The electrochemical reduction of methyl pridinium iodide (MPI) in water as well as acetonitrile solvent system was investigated. It was found, via cyclic voltammetry and polarography, that the reduction of MPI was a one-step reduction process. The half-wave potentials of MPI in water and acetonitrile solvents are − 1.423 and − 1.238 V vs silver—silver chloride electrode (ssce), respectively. The product of MPI reduction was verified to be a cation-free radical by means of both the uv and the epr spectra. This cation-free radical can be easily oxidized into, 1,1′-dimethyl 4,4′-bipyridinium diiodide (DMPI) by air. It was also found that DMPI may go through a two-step redox process with the first step being a reversible reduction process. Finally, the reaction mechanism of the reduction of MPI was deduced. 相似文献
18.
The thermal stability and pyrolysis behaviors of polyimide (PI) foam derived from 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA)/4,4′‐oxydianiline (4,4′‐ODA) in air and in nitrogen were studied. The decomposition products of PI foam were analyzed by thermogravimetry‐Fourier transform infrared spectroscopy (TG‐FTIR). Several integral and differential methods reported in the literatures were used in decomposition kinetics analysis of PI foam. The results indicated that the PI foam was easier to decompose in air than in nitrogen, with ~ 55% residue remaining in nitrogen versus zero in air at 800oC. The main pyrolysis products were CO2, CO, and H2O in air and CO2, CO, H2O, and small organic molecules in nitrogen. The different dynamic methods gave similar results that the apparent activation energies, pre‐exponential factors, and reaction orders were higher in nitrogen than those in air. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
19.
This paper describes the synthesis of 3,3′bis(2,2′,4,4′,6,6′-hexanitrostilbene) (5). Based on the Ullmann reaction we prepared the title compound in nitrobenzene by using 3-chloro 2,2′,4,4′,6,6′-hexanitroztilbene (4) as the starting material and copper powder as the catalyst. (4) was reacted with hydrazine, not to yield a desired product, azo-3,3′bist(2,2′,4,4′,6,6′-hexanitrostilbene.) but to form a well-known explosive, 2,2′,4,4′,6,6′-hexanitrostibene (6). Differential scanning calorimetrical analysis has shown that (5) begins to decompose at the temperature of 298°C. 相似文献
20.
Copolycondensations of IPA, TPA, bisphenol A (BPA), and several cimonomers were carried out to improve thermal properties, such as, the glass transition temperature (Tg) of the IPA/TPA (50/50)–BPA polyester. Among the comonomers examined, 4,4′‐Dihydroxydiphenylsulfone (BPS) and 4,4′‐Dicarboxydiphenylsulfone (DCDPS) having a strongly dipolar sulfonyl group in the chain were significantly effective. The favorable effect upon the Tgs was studied by varying the amounts of BPS and DCDPS incorporated into the copolymers. In the copolycondensation with BPS, two‐stage copolycondensation of BPA first and then BPS, the reverse order of reaction, and their spontaneous addition were examined to investigate the effect of distribution of the BPS unit segments in the copolymer upon the Tgs of the resulted copolymers. The distribution was briefly studied from distribution of the IPA/TPA‐BPA oligomers in the initial reaction using GPC. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 875–879, 2000 相似文献