首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PVC profile extrusion compounds have a unique morphology. While other polymers gradually decrease in extrusion die swell with increasing length/thickness (L/D) ratio, PVC profile extrusion compounds have a low die swell, quite independent of the die's L/D ratio in the range of 5 to 20. The fact that the die land length can be changed without changing the extrudate swell is an important consideration, which makes die design and balancing dies simpler and easier for PVC profile extrusion compounds. While other polymers substantially increase extrudate swell with increased shear rate, the swell of the PVC profile compounds is not much affected by shear or extrusion rate. This unique behavior allows wider processing latitude in profile extrusion and faster extrusion rates than with other polymers. Another unique factor in the rheology of PVC profile extrusion compounds is that extrusion die swell increases with increasing melt temperature, while other polymers have decreasing die swell with increasing melt temperature. The unusual rheology of PVC profile extrusion compounds is attributed to its unique melt morphology, where the melt flow units are 1 um bundles and molecules that have low surface to surface interaction and entanglement at low processing temperatures but increased melting and increased entanglement at higher processing temperatures. Other polymers, unlike PVC, have melt flow at the molecular level.  相似文献   

2.
Because of the effects of die swell, the final shape of an extrudate is often substantially different from that of the exit opening of the die. As a result, the design of profile dies producing complex shapes often involves more than just “balancing” the die but also compensating for the effects of die swell. Typically, a successful design of such dies is achieved only through much “cut and try,” However, with the use of a fully three‐dimensional finite element flow algorithm along with quick mesh generating capabilities, the usual cut and try involved in the design of many profile dies can be greatly reduced, if not eliminated. This paper demonstrates how the effects of die swell can be compensated for in the design of profile dies. For profiles with one plane of symmetry, this includes compensating for the sideways translation of the extrudate as well as the change in shape that the extrudate experiences. Completely asymmetric profiles undergo a “twisting” downstream of the die. This twisting, which appears not to have been reported in the literature (at least for isothermal extrusion), is also accounted for here, along with the change in shape that the extrudate undergoes. The translation or twisting of profiles downstream of a die is often attributed to non‐Newtonian or non‐isothermal effects. Only isothermal Newtonian examples are considered here. These results clearly show that asymmetry of the profile will result in a translation and twisting of the extrudate even in the isothermal Newtonian case.  相似文献   

3.
The die swell behavior of PVC melts is a manifestation of melt elasticity and is of considerable commercial as well as fundamental importance. This behavior is a critical issue in extrusion blow molding application where die swell (i.e. parison thickness) needs to be controlled. Advantageously, the addition of high molecular weight acrylic processing aids to PVC provides better die swell control, thus, improving dramatically the processability of PVC. Hence, knowledge of molecular weight variables of such acrylic processing aids is important from both the commercial and rheological point of view. Various acrylic processing aids were prepared by polymerization designed to provide systematic variation of molecular parameters. Molecular weight distribution of the polymers was characterized by GPC, and their die swell behavior in a typical PVC blow molding formulation was determined at 200°C over various range of residence times using different L/D capillary dies. The results are presented showing effects of specific molecular variables.  相似文献   

4.
A finite difference solution for an isothermal viscoelastic liquid flowing through a film forming die is investigated. The fluid is described by a Maxwell model in which the time derivative has been replaced by an Oldroyd's convective derivative and the numerical technique used combines features of the Solution Algorithm (SOLA), Simplified Marker and Cell method (SMAC), and SOLASMAC. The numerical scheme was tested with a Newtonian fluid and high density polyethylene (HDPE). Two slit dies with gap-to-length ratios 4 and 16 were used. In the two cases, die swell has occurred: A maximum of 4.5% swell was observed for the Newtonian fluid, while up to 77% swell was attained with HDPE. The simulated flow behavior of HDPE exhibited high amplitude oscillations at dimensionless time greater than 0.18. These oscillations are thought to be related to the nature of sheet flow, which can be unstable. This study shows that with some improvement the finite difference method can be used for studying the extrusion of polymer through slit and capillary dies.  相似文献   

5.
时敦璞 《聚氯乙烯》2012,40(7):32-34
分析了PVC-U管材生产中壁厚的重要性、PVC-U管材挤出模现状,依据实际生产经验总结出了PVC-U管材挤出模模口间隙及离模膨胀率,探讨了离模膨胀率的影响因素,给出了生产中的注意事项及控制措施。  相似文献   

6.
An experimental study was made of the effects of die geometry and extrusion velocity on parison swell for three high-density-polyethylene blowmolding resins. Four annular dies were used: a straight, a diverging, and two converging dies. Diameter and thickness swells were measured as functions of time under isothermal conditions and in the absence of drawdown. This was accomplished by extruding into an oil having the same density and temperature as the extrudate. It was observed that 60 to 80 percent of the swell occurs in the first few seconds and that equilibrium swell is attained only after 5 to 8 minutes have elapsed. The diameter and thickness swells appear to be independent phenomena, as the relationship between them depends strongly on die design. The ranking of the resins in terms of the magnitude of the swell was found to be the same for all die geometries and extrusion rates used.  相似文献   

7.
从挤出口模设计原则出发,综述了数值模拟技术在塑料异型材口模流道的曲面构型,入口角和压缩比、降低或消除挤出胀大和挤出口模成型段的设计、熔体流动平衡和压力降的研究进展,以及口模设计的发展趋势.  相似文献   

8.
Extrusion of a hot polymer melt through a cooler die zone substantially increases the extrudate swell of some thermoplastics. This effect was examined for commercial samples of low-density polyethylene, polypropylene, and polystyrene. Two conflicting effects come into play during extrusion of a thermoplastic. Colder melt temperatures promote increased extrudate swell, but the same conditions also facilitate molecular disentanglement and reduced melt elasticity and die swell. Since the extrusion process itself may affect the relation between die swell and melt temperature, laboratory-scale measurements for the design of processes like blow molding are better carried out with small-scale screw extruders than with capillary rheometers. For some applications it may be advantageous to use a polymer whose die swell is particularly responsive or unresponsive to die temperature variations. The procedure described in this article can be used effectively to monitor this characteristic.  相似文献   

9.
Microfabrication of Ceramics by Co-extrusion   总被引:4,自引:0,他引:4  
Fine-scale ceramic objects are fabricated by forcing a thermoplastic ceramic extrusion compound through a die with reduction ratio R. Objects with complex shapes are fabricated by assembling an extrusion feedrod from a shaped ceramic compound with space-filling fugitive compound. After each reduction state, R 2 extrudates are assembled into a feedrod and extruded again, reducing the size and multiplying the number of shaped objects. Several stages of extrusion produce arrays of objects in the size range of 10 µm.  相似文献   

10.
Experimental investigations were performed to see how the die exit geometry and the extrusion velocity influence on extrudate swell and melt fracture for several polymer melts [low-density polyethylene, styrene-butadiene rubber (SBR) and SBR/HAF (carbon black) compound]. Four different types of die exit geometry were considered; 0° (symmetric. usual capillary die), and 30°, 45° and 60° (asymmetric dies) were chosen for the die exit angle. Extrudate diameters were measured without draw-down under isothermal condition. Polymer melts were extruded into an oil that has the same density and temperature as those of the extrudate. Extrudate swells from dies with different diameters were correlated with volumetric flow rates. It was observed that the extrudate swell increases with increasing volumetric flow rate and exhibits through a minimum value at about 45° die exit angle. As to the fracture phenomena, it was observed that the critical shear for the onset of melt fracture increases with the increasing die exit angle up to 45°. However, for 60° die exit angle, the onset of melt fracture is again similar to that of 0° exit angle.  相似文献   

11.
The objective of this study was to determine the die swell behavior of a polymer melt and to design a die for forming a polymeric extrudate with a desired shape using profile extrusion. Polystyrene pellets were chosen to perform the profile extrusion experiments. First, the polystyrene pellets were melted and pushed through a quarter ring profile. The profile of the swelled extrudate agreed with the numerical predictions. A modified die was designed to produce a quarter ring profile extrudate based on the direct extrusion problem (DEP) prediction. Polystyrene pellets were also melted and pushed through the modified die. The experimental results were close to the computational results. The melting temperature, die length, and melting residence time affect die swell behavior. The die swell ratio becomes smaller as the melting temperature and melting residence time are increased. As the die length is increased, the die swell ratio is lowered. According to the die geometry predictions, an extrudate with the desired profile can be made precisely.  相似文献   

12.
赵良知  吴舜英 《塑料》2005,34(4):24-28
深入讨论了聚合物熔体在不同长径比、不同角度圆锥口模的挤出胀大现象及机理。对口模长径比较小的挤出胀大,由于熔体入口拉伸弹性变形来不及松弛,产生较大的挤出胀大;对长径比较大的口模,熔体在平直流道内停留时间较长,入口弹性形变逐渐松弛,这时主要是流动剪切应变引起的弹性变形,产生较弱的挤出胀大,比长径比小的挤出胀大来得小,并且聚合物熔体的挤出胀大随着长径比的增大而趋向一恒定值。结果还表明:聚合物熔体在圆锥口模的挤出胀大受到挤出口模入口角影响。当L/D较小时,挤出胀大与口模入口角有关;当L/D较大时,口模入口角对挤出胀大影响较小。  相似文献   

13.
弹性体短口型挤出胀大行为的研究   总被引:1,自引:0,他引:1  
梁基照 《弹性体》1995,5(4):43-45
讨论了聚合物熔化经短口型挤出时的胀大现象及机理,提出了预测短口型挤出胀大的数学模型,并引用混炼胶毛细管实验测量数据进行初步验证,结果表明,挤出胀大比的理论计算值与实测值有良好的一致性。  相似文献   

14.
The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model of three-dimensional(3D)viscoelastic flow through elliptical ring die for polymer extrusion was investigated.The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem.The discrete elastic viscous split stress(DEVSS)and streamline-upwind PetrovGalerkin(SUPG)technology were used to obtain stable simulation results.Free surface was updated by updating the streamlines which needs less memory space.According to numerical simulation results,the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight,but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly.Finally,the numerical simulation of extrudate swell flow for low-density polyethylene(LDPE)melts was investigated and the results agreed well with others’work.These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.  相似文献   

15.
The solid-state extrusion of polypropylene by hydrostatic pressure has been investigated at four different temperatures: 25, 50, 75, and 100°C. The pressure to effect extrusion was found to be essentially a linear function of the extrusion ratio at each temperature, while the magnitude of the extrusion pressure, for any given extrusion ratio, decreased appreciably with increasing temperature. With increase in extrusion-ratio, the polypropylene extrudates became increasingly transparent. After passing through the extrusion dies; the Sample showed some elastic recovery. The amount of this recovery decreased with increasing extrusion ratio, X-Ray diffraction measurements taken before and after extrusion showed reduction in sharpness of the crystalline Peaks. Differential, scanning calorimetric measurements, on the other hand, indicate that the relative heat of fusion of the extrudates increases with the extrusion ratio at each extrusion temperature. It also increases with extrusion temperature for a given ratio. Tensile stress-strain tests were made at various hydrostatic pressure levels on the extrudates obtained at 25°C and the extrusion ratio of 2.8. Unlike on the virgin sample of polypropylene, ho yield maximum was observed on the extrudate sample at all pressures investigated. However, the effects of pressure on the relative increase in the yield stress-and the modulus of the extrudate are comparable to those of original, unoriented samples.  相似文献   

16.
It is critical to quantitatively and reliably characterize the effects of swell and sag phenomena on the final parison dimensions in extrusion blow molding. To achieve this goal, an online image acquisition and analysis technique was developed. The successive images of parison were automatically taken using the online acquisition apparatus. These images were then analyzed by the combined use of the conventional digital image processing method and the new one developed by the authors. So the development of parison diameter and thickness swells with the extrusion time could be determined online. On the basis of the online obtained actual swell values, the pure swell and sag components were quantitatively determined. The developed technique was tested through a series of experiments using several resins under different processing parameters and die types. Shown in the present article were the results for a converging die under three different die gaps and a high‐density polyethylene. Some new phenomena were observed using the proposed technique. The results showed that the technique yields fast and accurate determination of the evolution of diameter, thickness, and length of parison during its extrusion. The technique can be employed as a part of the closed loop control for blow molded part thickness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2399–2406, 2006  相似文献   

17.
The melt fracture, shear viscosity, extensional viscosity, and die swell of a polypropylene resin were studied using a capillary rheometer and dies with a 0.05‐cm diameter and length/radius ratios of 10, 40, and 60. A temperature of 190°C and shear rates between 1 and 5000 s?1 were used. A modified Bagley plot was used with consideration of pressure effects on both the melt viscosity and end effect. The shear viscosity was calculated from the true wall shear stress. When the true wall shear stress increased, the end effect increased and showed critical stresses at around 0.1 and 0.17 MPa. The extensional viscosity was calculated from the end effect and it showed a decreasing trend when the strain rate increased. Both the shear and extensional viscosities correlated well with another polypropylene reported previously. The die swell was higher for shorter dies and increased when shear stress increased. When the shear rates increased, the extrudate changed from smooth to gross melt fracture with regular patterns (spurt) and then turned into an irregular shape. In the regular stage the wavelength of the extrudates increased when the shear rate increased. The frequency of melt fracture was almost independent of the shear rate, but it decreased slightly when the die length increased. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1587–1594, 2003  相似文献   

18.
The melt flow behavior of straight emulsion-polymerized PVC in a capillary extrusion rheometer has been found to depend upon both the molecular weight and the particle size of the sample. Observations of flow-rate, post-extrusion swell, and extrudate appearance, as functions of extrusion temperature and pressure, suggest that both molecular deformation and particle slippage are involved in the flow mechanism. The relative importance of these two modes of flow varies with extrusion conditions and with the PVC molecular weight and particle size. Particle slippage is favored by large particle size, high molecular weight, and low temperature and by a shear stress above a critical yield value. Apparent melt viscosity, swelling, and roughness are minimized under conditions corresponding to the maximum contribution of particle slippage. In the proper range of temperature and shear rate, straight emulsion PVC yields smooth, low-swell extrudates of excellent physical properties.  相似文献   

19.
Shear viscosity and die swell ratio of acrylonitrile-butadiene-styrene filled with glass beads and glass fibers were measured. The relative viscosity of the composites increased with filler content, but decreased with shear rate. At low shear rates, fiber filled systems had higher relative viscosities than bead filled systems. At high shear rates, the opposite was observed. The die swell ratio of the unfilled material increased linearly with the logarithm of the shear rate. Systems highly filled with glass beads or fibers showed a maximum in the die swell ratio at medium shear rates. The magnitude of the maximum in the die swell ratio increased with the filler content and the die length, up to a certain length, in a series of dies that had the same radius. The presence of a maximum in the die swell ratio of the filled melts is explained by an order-disorder phenomenon observed earlier by Wu.  相似文献   

20.
Solid-state extrusion of crystalline polymers is a well-known technique to produce monoaxial orientation in filaments and films. This is essentially achieved by extruding or drawing the polymer through a convergent die at temperatures below its melting point. Biaxial orientation in die drawing processes has been achieved by adding extensional forces in the transverse direction at the die exit, as in the case of tubular products. In the present study, billets of poly(tetrafluoropolyethylene) (PTFE) and ultrahigh-molecular-weight polyethylene (UHMWPE) were subjected to simultaneous deformations in the longitudinal and transverse directions, by means of dies featuring converging and diverging walls perpendicular to each other, to produce extrudates exhibiting a predominant orientation in the transverse direction. Two geometries, producing a nominal state of pure shear deformations, by maintaining constant the cross-section area at entry and exit, were examined to determine the relationship between die geometry, yielding and frictional properties of the polymer and extrusion forces. The effects of die geometry and processing conditions are analyzed in Part 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号