首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium grain boundary segregation of phosphorus was investigated in Fe–P–C, Fe–P–B and Fe–P–C–B alloys after austenitising at temperatures ranging from 825–1100 °C. The grain boundary concentrations were determined by Auger electron spectroscopy on intergranular fracture surfaces. Phosphorus, carbon and boron segregate to the austenite grain boundaries. The segregation of P in austenite occurs mainly in equilibrium, but some additional segregation takes place during quenching. Boron and, in a lesser degree, carbon were found to decrease the grain boundary concentration of phosphorus. The results can be explained by assuming equilibrium segregation and mutual displacement of these elements in austenite.  相似文献   

2.
The effect of boron on the grain boundary segregation of phosphorus in a high-purity Fe-0.2 pct P alloy has been investigated by Auger electron spectroscopy (AES). The segregation of phosphorus decreases markedly with the segregation of boron; phosphorus atoms are replaced by boron atoms at grain boundaries. The free energy of segregation of boron at 1073 K is determined to be 100 kJ/mol. The effect of boron on the phosphorus-induced intergranular fracture (IGF) has been examined with impact testing, and the fractography has been studied with scanning electron microscopy (SEM). Addition of 12.5 wt · ppm boron completely prevents the IGF induced by the segregation of phosphorus and decreases the ductile-brittle transition temperature (DBTT) by about 170 K when quenched from 1073 K. The suppression of the IGF due to the addition of boron is caused by two mechanisms. One is the increased grain boundary cohesion of iron caused by the segregated boron as its inherent effect. The other is the decrease in the segregation of phosphorus caused by the segregation of boron. The former has been shown to be more effective than the latter in suppressing the IGF. Formerly Graduate Student, Postdoctoral Fellow Formerly Research Student, Institute for Materials Research, Tohoku University Formerly with the Institute for Materials Research, Tohoku University  相似文献   

3.
Earlier work on AISI 4130 steels showed that phosphorus segregation to prior austenite grain boundaries was the primary cause for intergranular fracture of these steels when exposed to hydrogen. Reduction of P segregation to grain boundaries by removing the strong segregation couples of Mn-P and Si-P was expected to increase the hydrogen stress cracking resistance of 4130 type steels. Elimination of Mn and/or Si did reduce the concentration of P at prior austenite grain boundaries, but allowed segregation of S and N which acted in the same manner as P, promoting intergranular hydrogen stress cracking.  相似文献   

4.
Phosphorus and carbon segregation to austenite grain boundaries and its effects on fatigue and fracture were studied in carburized modified 4320 steel with systematic variations, 0.005, 0.017, and 0.031 wt pct, in alloy phosphorus concentration. Specimens subjected to bending fatigue were characterized by light metallography, X-ray analyses for retained austenite and residual stress measurements, and scanning electron microscopy (SEM) of fracture surfaces. Scanning Auger electron spectroscopy (AES) was used to determine intergranular concentrations of phosphorus and carbon. The degree of phosphorus segregation is directly dependent on alloy phosphorus and carbon content. The degree of carbon segregation, in the form of cementite, at austenite grain boundaries was found to be a function of alloy phosphorus concentration. The endurance limit and fracture toughness decreased slightly when alloy phosphorus concentration was increased from 0.005 to 0.017 wt pct. Between 0.017 and 0.031 wt pct phosphorus, the endurance limit and fracture toughness decreased substantially. Other effects related to increasing alloy phosphorus concentration include increased case carbon concentration, decreased case retained austenite, increased case compressive residual stresses, and increased case hardness. All of these results are consistent with the phosphorus-enhanced formation of intergranular cementite and a decrease in carbon solubility in intragranular austenite with increasing phosphorus concentration. Differences in fatigue and fracture correlate with the degree of cementite coverage on the austenite grain boundaries and the buildup of phosphorus at cementite/matrix interfaces because of the insolubility of phosphorus in cementite.  相似文献   

5.
利用径迹显微照相技术研究了超低碳贝氏体钢焊接热影响区在焊接热循环快速加热过程中硼在奥氏体晶界上的偏聚行为。发现以高密度位贝氏体为原始组织的材料进行快速加热时,新形成的奥氏体晶粒边界上在很高温度下仍会出现反常的晶界硼偏聚。用晶界位错驰原制对这种新的非平衡现象进行了讨论。  相似文献   

6.
The role of solute segregation in promoting the hardenability of steel   总被引:1,自引:0,他引:1  
The two most potent promoters of hardenability in steel are boron and phosphorus. It appears that these elements function by segregating to austenite grain boundaries and interfering with the nucleation of proeutectoid ferrite. It is suggested that this occurs by the stabilization or alteration of the structure of certain special grain boundary re-gions which serve as favored nucleation sites for ferrite. It is demonstrated how at least part of the effect of alloying elements like manganese and chromium might be ascribed to their enhancement of phosphorus segregation. Under certain conditions phosphorus could be a useful addition to increase the hardenability of low alloy steels.  相似文献   

7.
超低碳钢在铁素体生长过程中硼分布的变化   总被引:4,自引:0,他引:4  
通过对照显微结构与硼的自射线径迹显微照相(PTA),研究了一种超低碳含硼钢在铁素体生长过程中硼分布的变化,发现:在发生等温铁素体相变前,硼已偏聚在奥氏体晶界上;铁素体在奥氏体晶界形核;在有铁素体生成的奥氏体晶界上,硼偏聚减弱;沿晶界长出的小块铁素体中硼浓度明显高于奥氏体,但随铁素体长大,其硼含量逐渐与母相持平。这些现象表明,铁素体长大不受硼在奥氏体中扩散的控制  相似文献   

8.
《Acta Metallurgica》1988,36(1):13-24
A combination of TEM, FIM, AP and IAP has been used to study boron grain boundary segregation in austenitic stainless steels of the types 316L (with 40 ppm or with <1 ppm boron) and “Mo-free 316L” (23 ppm boron). High resolution segregation profiles were determined for cooling rates from 0.29 to 530°C/s for three starting temperatures: 800, 1075 and 1250°C. Boron grain boundary segregation was found after all heat treatments. The segregation behaviour was mainly of the nonequilibrium type after cooling from 1075 or 1250°C whereas equilibrium segregation dominated after rapid cooling from 800°C. The influence of the relative grain orientation on the amount of non-equilibrium segregation was small for general boundaries. However, no segregation was detected at coherent twin boundaries. The binding energy of boron to austenite grain boundaries was estimated at 0.65 ± 0.04 eV for both types of steels. The influence of the composition and boron content of the steels on the segregation behaviour is discussed and the experimental techniques used are presented.  相似文献   

9.
Intergranular fracture surfaces of high phosphorus (0.023 wt pct P) and low phosphorus (0.009 wt pct P) AISI 52100 steels were investigated by Auger Electron Spectroscopy (AES). Cementite, identified by composition and Auger peak shape, was found to form on austenite boundaries in specimens oil quenched from 960 °C to room temperature as well as in specimens quenched from 960 °C and isothermally held at temperatures between Acm and A1. Phosphorus segregates to austenite boundaries during austenitizing and accelerates cementite formation on the austenite boundaries. Concentration profiles obtained by AES during ion sputtering showed that phosphorus may be incorporated in the first-formed cementite and concentrates at cementite/matrix interfaces in later stages of cementite growth. The amount of interphase P segregation in the later stages is proportional to bulk alloy P concentration in accord with McLean’s theory of grain boundary segregation in dilute alloys and appears to approach equilibrium at high reaction temperatures (785 °C). At lower reaction temperatures (740 °C), the interphase segregation is lower than expected, a result that may be attributed to reduced diffusivity of P at the lower reaction temperature.  相似文献   

10.
Phosphorus as a tramp element deteriorates the toughness and enhances the brittle fracture in high strength steels. Even very low bulk concentrations can cause severe enrichment on the prior austenite grain boundaries. This seriously restricts the applicability of highly demanded vehicle components. Three approaches were chosen to reduce the detrimental effect of phosphorus in quenched and tempered high strength CrV‐steels for high power leaf springs: Change in the chemistry (addition of boron for repelling phosphorus from the grain boundaries), application of thermomechanical treatment (TMT) instead of conventional heat treatment (CHT) (producing lattice defects as intragranular traps for phosphorus atoms) and optimizing the tempering process (balancing grain boundary segregation and lattice restoration). Whereas no effect of boron was determined, TMT reduces the sensitivity to phosphorus and leads to better ductility, especially for the highest strength Rm > 2000 MPa. The best strength ‐ ductility combination was found for the range of tempering temperatures ?temp between 280 and 330 °C even for phosphorus contaminated steels. Outside of this range of ?temp, there is a significant deterioration of ductility for P ≥ 0.02 %. Independent of P‐content, there is a dramatic decrease in 0.2 % proof strength for ?temp decreasing below 280 °C due to residual internal stresses.  相似文献   

11.
Field emission scanning electron microscope and transmission electron microscope combined with energy dispersive spectrometer were used to observe the phosphorus segregation behavior in hot- rolled medium- manganese TRIP steel. The samples were annealed at different temperatures, followed by the same aging process at 560?? for 50h. The results show that particle- like phosphorus is dispersively distributed in the samples annealed at 650??, while the sample annealed at 750?? shows uneven narrow- band- like phosphorus distribution. The entire phosphorus segregation zone overlaps with carbides precipitation. Both 650 and 750?? are intercritical region (ferrite + austenite) temperatures. The segregation usually occurs at ferrite grain boundaries. At the same temperature, the diffusion coefficient of phosphorus in ferrite is 26 times than in austenite. However, it is insufficient to explain the effect of annealing temperature on phosphorus segregation by diffusion coefficient. According to the Kikuchi line analysis in the electron backscatter diffraction, the phosphorus- containing precipitate phase is mainly FeP in orthogonal crystal system and MnxFe1-xP solid solution, which is in accord with the calculation results in Fe- Mn- C- P system by Factsage software.  相似文献   

12.
《Acta Metallurgica》1986,34(2):219-232
The resistance to ductile and brittle fracture of four experimental melts of MnMoNi steel containing varying levels of sulphur, copper and phosphorus has been examined as a function of austenitisation heat treatment, with and without subsequent ageing at 500°C following tempering at 650°C. Fracture resistance was assessed by Charpy impact tests, fracture modes were studied using the scanning electron microscope, grain boundary segregation was quantified from Auger spectroscopy, and boron distribution determined by boron autoradiography. The results indicate that austenitisation heat treatment strongly influences the ductile-brittle transition temperature (DBTT) and upper shelf fracture energy (USE) in the quenched and tempered condition. The subsequent susceptibility to temper embrittlement is also markedly affected, high austenitisation temperatures being detrimental in all respects. Phosphorus segregation has been shown to occur during air cooling from tempering and during isothermal ageing, the degree of segregation increasing with austenitisation temperature, resulting in an increase in DBTT and a reduction in USE. Changes in DBTT and USE on isothermal ageing have been attributed to phosphorus segregation in all four composition melts. Microstructures susceptible to embrittlement have also shown enhanced levels of boron or boron-containing particles at prior austenite grain boundaries.  相似文献   

13.
The equilibrium grain boundary segregation of antimony was investigated in iron base alloys (Fe-Sb, Fe-C-Sb, Fe-Ni-Sb) after annealing at temperatures between 550 and 750°C. Utilizing Auger electron spectroscopy (AES) the concentration of antimony at intergranular fracture faces was determined as a function of bulk concentration and equilibration temperature. The segregation of antimony in Fe-Sb alloys with mass contents of between 0.012 and 0.094 % Sb was described by the Langmuir-McLean equation. The evaluation leads to the free enthalpy of segregation ΔGsegr = ?19 kJ/mol - T 28 J/mol K. The relatively low value for the segregation enthalpy ΔH = ?19 kJ/mol indicates a rather small tendency for grain boundary segregation of Sb. However, its embrittling effect is strong, scanning electron micrographs (SEM) of fractured samples show that the percentage of intergranular fracture strongly increases with an increasing coverage of antimony at the grain boundaries. The data for Fe-0.93% Sb and Fe.1.91% Sb (mass contents) do not fit in the thermodynamic evaluation obviously due to formation of antimonide precipitates in the grain boundaries. The addition of carbon to Fe-Sb alloys results in a higher grain boundary cohesion which is caused by two effects of carbon, displacement of antimony from the grain boundaries by carbon and enhanced grain boundary cohesion. In the Fe-Ni-Sb alloys additional segregation of nickel was found at the grain boundaries but no enhanced antimony segregation, as expected from previous models of other authors, assuming Ni-Sb cosegregation.  相似文献   

14.
The boron concentration profiles around prior austenite grain boundaries in Fe-0.05C-0.5Mo-0.001B (mass pct) are examined using aberration-corrected STEM-EELS. In order to obtain the precise distribution of boron around the boundaries, tilt series measurements with thin specimens (<30 nm) are performed and the EEL spectra are analyzed by principal component analysis (PCA) and multivariate curve resolution (MCR). The boron concentration profile changes with the cooling rate from the solid solution temperature. The concentration at grain boundaries is maximized at a medium rate (30 °C/s), where the concentration reaches 8 at. pct, and it decreases at a larger (250 °C/s) or smaller (5 °C/s) rate. On the other hand, the boron distribution becomes wider as the cooling rate becomes smaller. The current results suggest that the boron segregation in the alloy is formed by the “non-equilibrium segregation mechanism.”  相似文献   

15.
Grain boundary segregation in iron-sulfur-carbon alloys containing up to 100 wt ppm sulfur and up to 90 wt ppm carbon has been investigated with Auger electron spectroscopy (AES). The results show the site compctition on grain boundaries between the segregation of sulfur and carbon. The segregation energy of sulfur is estimated to be 75 kJ/mol. Impact tests of these alloys were carried out. Iron-sulfur alloys with less than 20 wt ppm carbon fractured by the intergranular mode with high ductile-brittle transition temperatures (DBTT’s). Addition of up to 90 wt ppm carbon to the binary alloys prevented the intergranular fracture caused by the grain boundary segregation of sulfur, and decreased the DBTT. Carbon, when segregated to grain boundaries, drives sulfur away from the boundaries and also increases the grain boundary cohesion. The DBTT values of the iron-sulfur-carbon alloys are analyzed in terms of the degree of grain boundary segregation of sulfur and carbon. It is shown that sulfur decreases the grain boundary cohesion of iron more severely than phosphorus if compared at the same degree of grain boundary segregation.  相似文献   

16.
InfluenceofCeriumandPhosphorusonEmbrittlementinManganeseSteelsFENGSongYun;WuChengJian;LIJingHui ̄①InfluenceofCeriumandPhosphor...  相似文献   

17.
Grain boundary segregation in iron-sulfur-carbon alloys containing up to 100 wt ppm sulfur and up to 90 wt ppm carbon has been investigated with Auger electron spectroscopy (AES). The results show the site compctition on grain boundaries between the segregation of sulfur and carbon. The segregation energy of sulfur is estimated to be 75 kJ/mol. Impact tests of these alloys were carried out. Iron-sulfur alloys with less than 20 wt ppm carbon fractured by the intergranular mode with high ductile-brittle transition temperatures (DBTT’s). Addition of up to 90 wt ppm carbon to the binary alloys prevented the intergranular fracture caused by the grain boundary segregation of sulfur, and decreased the DBTT. Carbon, when segregated to grain boundaries, drives sulfur away from the boundaries and also increases the grain boundary cohesion. The DBTT values of the iron-sulfur-carbon alloys are analyzed in terms of the degree of grain boundary segregation of sulfur and carbon. It is shown that sulfur decreases the grain boundary cohesion of iron more severely than phosphorus if compared at the same degree of grain boundary segregation. Formerly Graduate Student  相似文献   

18.
The effects of 25 ppm boron and of 0.05% phosphorus on the creep behaviour at 550 °C and on the fracture temperature in the constant load fracture test were tested for a 1.5% Cr–0.5% Mo steel. B and P decrease the creep strength, the rupture elongation is increased by B. B and P lower stress relief cracking susceptibility, however, it is increased at low stress. In the B doped material the rate of P grain boundary segregation is accelerated and the level of equilibrium segregation is somewhat higher, the equilibrium segregation is somewhat lower in the bainitic than in the martensitic structure.  相似文献   

19.
工业化试制了3种厚度规格(20,26和36mm)的新型低成本高焊接性能船板钢EH36。试制钢板的显微组织由多边形铁素体和针状铁素体构成,其力学性能满足EH36级别船板要求并具有优异的低温韧性。采用焊接热模拟评价了钢板的焊接性能,当热输入由30kJ/cm升高至160kJ/cm时,粗晶区原奥氏体晶粒尺寸逐渐增大,其组织也逐渐由粒状贝氏体向晶界铁素体+晶内针状铁素体+晶内多边形铁素体转变,维氏硬度逐渐下降,低温韧性优异。得益于TiN粒子对奥氏体晶粒长大的抑制作用,微量B元素对先共析铁素体转变的抑制作用以及BN粒子对晶内铁素体形核的促进作用,焊接粗晶区获得了有利于韧性的细化组织,保证了粗晶区具有优异的低温韧性。双丝埋弧焊试验也验证了钢板具有优异的焊接性能。  相似文献   

20.
微合金化控轧控冷钢筋纵向金相组织研究   总被引:1,自引:0,他引:1  
曹重  邹荣  吴光耀  陈伟 《钢铁》2013,48(6):61-66
 对微合金化控轧控冷钢筋的纵向金相组织进行了研究,并分析了不同成分试验钢纵向“条带”组织的差异及形成原因。研究结果表明:偏析元素(P、Si、Mn等)在轧制过程中沿轧制方向呈条状分布,是20MnSi、20MnSiV钢产生带状组织的原因。铌及其碳氮化物的溶质拖曳和“钉扎”作用,使20MnSiNb钢的奥氏体未再结晶轧制温度提高到1050℃,在冷却过程中,先共析铁素体在形变奥氏体晶界和内部变形带均匀析出,随后沿形变奥氏体晶界(在先共析铁素体与奥氏体的界面上)生成珠光体带,最后在形变奥氏体晶粒内部形成贝氏体条。研究条件下优势形核点的排序为:形变奥氏体晶界和形变奥氏体晶内变形带、偏析元素和夹杂、再结晶奥氏体晶界。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号