首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two model epoxy resin precursors based on the N-glycidyl derivatives of 4.4'-diaminodiphenylene methane (DDM) were prepared: N,N bis-(2,3-epoxypropyl)-N′,N″-dimethyl-4.4'-diaminodiphenylene methane (G2A); N.N′ bis-(2,3-epoxypropyl)-N,N′-dimethyl-4,4'-diaminodiphenylene methane (G2S). To prepare these, aniline or N-methyl aniline was reacted with epichlorohydrin, using acetic acid as catalyst. The products were coupled via acid-catalysed condensations in the presence of formaldehyde or with N,N-dimethylaminobenzyl alcohol. The coupled chlorohydrins formed were then dehydrochlorinated to form the desired product. All reactions were monitored and purifications of the crude products were effected by high pressure liquid chromatographic techniques. The products were characterised by proton and carbon-13 nuclear magnetic resonance, infrared and mass spectroscopy, elemental and titrametric analysis. Results were compared with those obtained for tetra-N-glycidyl-4,4'-diaminodiphenylene methane (TGDDM). All the data confirmed the structures of the model resins. These, together with TGDDM. will be used to prepare epoxy resin networks of controlled crosslink density and chemical homogeneity.  相似文献   

2.
Carefully designed resin precursors of high purity, viz. N,N-bis-(2,3-epoxypropyl)-N',N-dimethyl-4,4′-diaminodiphenylenemethane (G2A) and N,N-bis-(2,3-epoxypropyl)-N,N-dimethyl-4,4′-diamino-diphenylenemethane (G2S) were used in combination with N,N,N',N-tetrakis-(2,3-epoxypropyl)-4,4′-diaminodiphenylene methane, TGDDM, and cured with stoichiometric amounts of 4,4′-diamino-diphenylene methane (DDM) to produce networks with a range of controlled crosslink density. The tensile moduli E of the networks in the rubbery state, at Tg+30°C, Tg+45°C and Tg+60°C, were measured using a thermal mechanical analyser. Using the statistical theory of rubber elasticity and the observed values of E, the number average molecular weights between crosslink points Mc for the cured resins were deduced. The experimental Mc values were then compared with those derived by calculations based on a probabilistic model of the network proposed by Chu and Seferis.1 The experimental Mc values were 2.5 to 5.5 times larger than the calculated ones. The differences were attributable to a consumption of only 40% of the available secondary amino hydrogen via epoxy-amine reaction. A direct relationship was established between the glass transition temperature and the crosslink density 1/Mc for the resins, and the dynamic mechanical properties were studied. The thermal stability of cured resins studied by thermo-gravimetric analysis indicated an enhancement of stability as 1/Mc was reduced. The amount of water absorbed by cured resin was directly proportional to 1/Mc.  相似文献   

3.
Glass fiber-reinforced epoxy composites were prepared from the matrix resins tetraglycidyl diaminodiphenylmethane
  • 1 Systematic name: N,N,N′,N′-Tetrakis(2,3-epoxypropyl)-4,4′-diaminodiphenylmethane.
  • (TGDDM) and tetraglycidyl bis(o-toluidino)-methane
  • 2 Systematic name: N,N,N′,N′-Tetrakis(2,3-epoxypropyl)-4,4′-bis(o-toluidino)methane.
  • (TGMBT) using various amines like 4,4′-diaminodiphenylmethane (DDM), 4,4′-diaminodiphenylsulfone (DDS) and diethylene triamine (DETA) as curing agents. The fabricated laminates were evaluated for their mechanical and dielectrical properties and chemical resistance. The composites prepared using an epoxy fortifier (20 phr) showed significant improvement in the mechanical properties.  相似文献   

    4.
    N,N-Bis (2, 3-epoxypropyl) aniline and 4,4′-methylenebis-[N,N-bis (2,3-epoxypropyl) aniline] containing bromo, chloro, trifluoromethyl or polyfluoroalkoxy substituents were synthesised and cured with aromatic diamines in order to investigate the effect of substituted halogen on water absorption. Significant improvements were achieved: thus use of 4,4′-methylenebis-[N, N-bis (2, 3-epoxypropyl)-3, 5-dichloroaniline] and 4,4′-methylenebis-[N,N-bis (2,3-epoxypropyl)-3-(trifluoromethyl) aniline] instead of 4,4′-methylenebis-[N,N-bis (2,3-epoxypropyl) aniline] reduced the water absorption by about a half. Departures from Fickian behaviour were observed during water immersion ageing at room temperature and were a general feature of the epoxy systems examined. Plots of water absorption against the Fickian parameter (√t/d) usually showed at least mild sigmoid character and were not independent of specimen thickness. Further, slow continued uptake of water occurred during long-term ageing, and evidence is provided that the associated network distortions are reversible.  相似文献   

    5.
    A novel tetrafunctional epoxy resin, namely N,N,N′N′-tetrakis(2,3-epoxypropyl)-4,4′-(1,4-phenylenedioxy)dianiline, has been synthesized. The curing kinetics has been studied by differential scanning calorimetry (DSC) using various amine curing agents. Thermal stabilities of the cured products have been investigated by thermogravimetric (TG) analyses. The overall activation energies for the curing reactions are observed to be in the range 63.6–196.7 kJ·mol–1. The cured products have good thermal stability.  相似文献   

    6.
    Polyimides and polyamide-imides containing azomethine linkages in the polymer backbone have been synthesized from 4,4′-bis(4-isocyanatobenzylidene)-diaminodiphenylether (ODAI), 4,4′-bis(4-isocyanatobenzylidene)-diaminodiphenyl-methane (MADI), 4,4′-bis(4-isocyanatobenzylidene)-diaminodiphenylsulphone (SDAI), pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), and trimellitic anhydride (TMA), by a one-step process. The diisocyanates ODAI, MDAI and SDAI were prepared from the corresponding diacids, namely, 4,4′-bis(4-carboxybenzylidene)-diaminodiphenylether (ODAA), 4,4′-bis(4-carboxybenzylidene)-diaminodiphenylmethane (MDAA) and 4,4′-bis-(4-carboxybenzylidene)-diaminodiphenylsulphone (SDAA) by a Weinstock-modified Curtius rearrangement method. All the polycondensation reactions were conducted in N-methyl-2-pyrrolidone (NMP) under identical conditions and the polymers obtained were characterized by IR spectroscopy, solution viscosity, elemental analysis, thermogravimetric analysis, differential scanning calorimetry and X-ray diffraction.  相似文献   

    7.
    Since the first definition of domino reactions by Tietze in 1993, an explosive number of these fascinating reactions has been developed, allowing the easily building of complex chiral molecular architectures from simple materials to be achieved in a single step. Even more interesting, the possibility to join two or more reactions in one asymmetric domino process catalyzed by chiral metal catalysts has rapidly become one challenging goal for chemists, due to economical advantages, such as avoiding costly protecting groups and time‐consuming purification procedures after each step. The explosive development of enantioselective metal‐catalyzed domino including multicomponent reactions is a consequence of the considerable impact of the advent of asymmetric transition metal catalysis. This review aims to update the last developments of enantioselective one‐, two‐ and multicomponent domino reactions mediated by chiral metal catalysts, covering the literature since the beginning of 2006. Abbreviations: Ac: acetyl; AQN: anthraquinone; Ar: aryl; bdpp: 2,4‐bis(diphenylphosphino)pentane; BINAP: 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl; BINEPINE: phenylbinaphthophosphepine; BINIM: binapthyldiimine; BINOL: 1,1′‐bi‐2‐naphthol; BIPHEP: 2,2′‐bis(diphenylphosphino)‐1,1′‐biphenyl; Bn: benzyl; Boc: tert‐butoxycarbonyl; Box: bisoxazoline; BOXAX: 2,2′‐bis(oxazolyl)‐1,1′‐binaphthyl; BPTV: N‐benzene‐fused phthaloyl‐valine; Bu: butyl; Bz: benzoyl; Cat: catechol; Chiraphos: 2,3‐bis(diphenylphosphine)butane; cod: cyclooctadiene; Cy: cyclohexyl; DABCO: 1,4‐diazabicyclo[2.2.2]octane; dba: (E,E)‐dibenzylideneacetone; DBU: 1,8‐diazabicyclo[5.4.0]undec‐7‐ene; DCE: dichloroethane; de: diastereomeric excess; DHQ: hydroquinine; DHQD: dihydroquinidine; DIFLUORPHOS: 5,5′‐bis(diphenylphosphino)‐2,2,2′,2′‐tetrafluoro‐4,4′‐bi‐1,3‐benzodioxole; DIPEA: diisopropylethylamine; DMF: dimethylformamide; DMSO: dimethyl sulfoxide; DOSP: Np‐dodecylbenzenesulfonylprolinate; DPEN: 1,2‐diphenylethylenediamine; dtb: di‐tert‐butyl; dtbm: di‐tert‐butylmethoxy; E: electrophile; ee: enantiomeric excess; Et: ethyl; FBIP: ferrocene bis‐imidazoline bis‐palladacycle; Fc: ferrocenyl; FOXAP: ferrocenyloxazolinylphosphine; Hex: hexyl; HFIP: hexafluoroisopropyl alcohol; HMPA: hexamethylphosphoramide; iPr‐DuPhos: 1,2‐bis(2,5‐diisopropylphospholano)benzene; Josiphos: 1‐[2‐(diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine ethanol adduct; L: ligand; MCPBA: 3‐chloroperoxybenzoic acid; Me: methyl; Me‐DuPhos: 1,2‐bis(2,5‐dimethylphospholano)benzene; MEDAM: bis(dimethylanisyl)methyl; MOM: methoxymethyl; Naph: naphthyl; NMI: N‐methylimidazole; MWI: microwave irradiation; Norphos: 2,3‐bis(diphenylphosphino)‐bicyclo[2.2.1]hept‐5‐ene; Ns: nosyl (4‐nitrobenzene sulfonyl); Nu: nucleophile; Oct: octyl; Pent: pentyl; Ph: phenyl; PHAL: 1,4‐phthalazinediyl; Pin: pinacolato; PINAP: 4‐[2‐(diphenylphosphino)‐1‐naphthalenyl]‐N‐[1‐phenylethyl]‐1‐phthalazinamine; Pr: propyl; Py: pyridyl; PYBOX: 2,6‐bis(2‐oxazolyl)pyridine; QUINAP: 1‐(2‐diphenylphosphino‐1‐naphthyl)isoquinoline; QUOX: quinoline‐oxazoline; Segphos: 5,5′‐bis(diphenylphosphino)‐4,4′‐bi‐1,3‐benzodioxole; Solphos: 7,7′‐bis(diphenylphosphino)‐3,3′,4,4′‐tetrahydro‐4,4′‐dimethyl‐8,8′‐bis‐2H‐1,4‐benzoxazine; SPRIX: spirobis(isoxazoline); SYNPHOS: 6,6′‐bis(diphenylphosphino)‐2,2′,3,3′‐tetrahydro‐5,5′‐bi‐1,4‐benzodioxin; Taniaphos: [2‐diphenylphosphinoferrocenyl](N,N‐dimethylamino)(2‐diphenylphosphinophenyl)methane; TBS: tert‐butyldimethylsilyl; TC: thiophene carboxylate; TCPTTL: N‐tetrachlorophthaloyl‐tert‐leucinate; TEA: triethylamine; Tf: trifluoromethanesulfonyl; TFA: trifluoroacetic acid; THF: tetrahydrofuran; TMS: trimethylsilyl; Tol: tolyl; Ts: 4‐toluenesulfonyl (tosyl); C3‐Tunephos: 1,13‐bis(diphenylphosphino)‐7,8‐dihydro‐6H‐dibenzo[f,h][1,5]dioxonin; VAPOL: 2,2′‐diphenyl‐[3,3′‐biphenanthrene]‐4,4′‐diol  相似文献   

    8.
    Recent research at the NASA Langley Research Center has involved the production of polyamic acid fibers from resins derived from the reaction of 3,3′,4,4′-benzophenonetetra-carboxylic dianhydride and 3,3′-diaminobenzophenone or 4,4′-oxydianiline in N,N-dimethylacetamide. Resins were extruded into aqueous solutions of ethylene glycol, ethanol, or N,N-dimethylacetamide in order to induce filament formation. These filaments were then washed in water and dried using air or vacuum ovens. Fractured fiber ends were examined using an optical or scanning electron microscope for the presence of macropores, termed voids. Coagulation bath concentration and composition, resin inherent viscosity, resin % solids, and filament diameter were studied to determine their effect on the production of solid core fibers.  相似文献   

    9.
    Various copolyamides have been synthesized from 2-(N-β-naphthylamine)-4,6-bis-(naphthoxy-3-carbonylchloride)-s-triazine [NANCCT] with each of the mixture of diols: 4,4′-diaminodiphenyl (DADP)+4,4′-diaminodiphenyl methane (DADPM), DADP + 4,4′-diaminodiphenyl amide (DADPA), DADP+4,4′-diaminodiphenylsulfonamide (DADPSA), DADP+4,4′-diaminodiphenyl sulfone (DADPS), DADP+2,4-diaminotoluene (DAT), DADP+p-phenylenediamine (PPDA), DADP+ethylene diamine (EDA), EDA+DADPM, EDA+DADPA, EDA+DADPSA, EDA+DADPS, EDA+DAT, EDA + PPDA. All polyamides were characterized by various physicochemical properties such as yield, color, solubility, density, viscosity, temperature characteristics, activation energy of thermal decomposition, IR spectra and NMR spectra.  相似文献   

    10.
    Tetra‐functional epoxy resin N,N,N′,N′‐tetraglycidyl‐3,3′‐diethyl‐4,4′‐diaminodiphenylmethane (TGDEDDM) was synthesized and characterized. The viscosity of TGDEDDM at 25°C was 7.2 Pa·s, much lower than that of N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM). DSC analysis revealed that the reactivity of TGDEDDM with curing agent 4,4′‐diamino diphenylsulfone (DDS) was significantly lower than that of TGDDM. Owing to its lower viscosity and reactivity, TGDEDDM/DDS exhibited a much wider processing temperature window compared to TGDDM/DDS. Trifluoroborane ethylamine complex (BF3‐MEA) was used to promote the curing of TGDEDDM/DDS to achieve a full cure, and the thermal and mechanical properties of the cured TGDEDDM were investigated and compared with those of the cured TGDDM. It transpired that, due to the introduction of ethyl groups, the heat resistance and flexural strength were reduced, while the modulus was enhanced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40009.  相似文献   

    11.
    Three novel aromatic phosphorylated diamines, i.e., bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl} pyromellitamic acid (AP), 4,4′‐oxo bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AB) and 4,4′‐hexafluoroisopropylidene‐bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AF) were synthesized and characterized. These amines were prepared by solution condensation reaction of bis(3‐aminophenyl)methyl phosphine oxide (BAP) with 1,2,4,5‐benzenetetracarboxylic acid anhydride (P)/3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride (B)/4,4′‐(hexafluoroisopropylidene)diphthalic acid anhydride (F), respectively. The structural characterization of amines was done by elemental analysis, DSC, TGA, 1H‐NMR, 13C‐NMR and FTIR. Amine equivalent weight was determined by the acetylation method. Curing of DGEBA in the presence of phosphorylated amines was studied by DSC and curing exotherm was in the temperature range of 195–267°C, whereas with conventional amine 4,4′‐diamino diphenyl sulphone (D) a broad exotherm in temperature range of 180–310°C was observed. Curing of DGEBA with a mixture of phosphorylated amines and D, resulted in a decrease in characteristic curing temperatures. The effect of phosphorus content on the char residue and thermal stability of epoxy resin cured isothermally in the presence of these amines was evaluated in nitrogen atmosphere. Char residue increased significantly with an increase in the phosphorus content of epoxy network. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2235–2242, 2002  相似文献   

    12.
    A diamine containing a pendant phenoxy group, 1-phenoxy-2,4-diaminobenzene, was synthesized and condensed with different aromatic dianhydrides [4,4′-oxydiphthalic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracorboxylic dianhydride, and pyromellitic dianhydride] by one-step synthesis at a high temperature in m-cresol to obtain polyimides in high yields. Most of the polyimides exhibited good solvent solubility and could be readily dissolved in chloroform, sym-tetrachloroethane, N,N-dimethylformamide, N,N-dimethylacetamide, and nitrobenzene. Their inherent viscosities were in the range of 0.33–1.16 dL/g. Wide-angle X-ray spectra revealed that these polymers were amorphous in nature. All these polyimides were thermally stable, having initial decomposition temperatures above 500°C and glass-transition temperatures in the range of 248–281°C. The gas permeability of 4,4′-oxydiphthalic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride based polyimides was investigated with pure gases: He, H2, O2, Ar, N2, CH4, and CO2. A polyimide containing a  C(CF3)2 linkage showed a good combination of permeability and selectivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

    13.
    Low-molecular-weight poly(arylene keto amines) were prepared from the polymerization of 4,4-bis(chloroacetyl)diphenyl ether, 4, 4′-bis(bromoacetyl) diphenyl ether, and 4,4′-bis(2-bromopropionyl) diphenyl ether with piperazine, 4, 4′-trimethylenedipiperidine, and N, N′-dimethyl-1,3-propanediamine. These film-forming polymers and suitable monomeric model compounds were found to be degraded by photolysis. The poly(keto amines) resisted degradation by the fungi As-pergillus niger and Aspergillus flavus.  相似文献   

    14.
    A novel allylphenoxytriazine monomer, 2,4‐di (2‐allylphenoxy)‐6‐N,N‐dimethylamino‐1,3,5‐triazine (DAPDMT) was prepared in one‐pot by reacting cyanuric chloride with 2‐allylphenol at first, and then by directly treating the adduct with N,N‐dimethylamine without separation. The monomer was used to modify a popular commercial bismaleimide (BMI) resin, 4,4′‐bismaleimidodiphenyl methane (BMDPM), and the results showed that the monomer could effectively improve mechanical properties of BMDPM resin without greatly decreasing heat resistance of the resin. The better results were obtained when the molar ratio of DAPDMT/BMDPM was 1 : 4. Because of more reactive sites in the monomer, the potential uses of the monomer were predicted. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2279–2284, 2002  相似文献   

    15.
    The development of adhesive tapes that can be applied at high temperature is a major challenge for pressure-sensitive adhesives (PSAs). To date, the heat resistance of PSAs has not been investigated in sufficient details. In this study, based on the relationship between curing structures and properties, a series of acrylic PSAs with excellent heat resistance were prepared. Commercial zirconium acetylacetonate (ZrACA), desmodur L75 (L75), and N,N,N′,N′-tetrakis(2,3-epoxypropyl)-m-xylene-α,α′-diamine (GA240) were employed as heat-curing agents. Trimethylolpropane triacrylate (TMPTA) was used as ultraviolet (UV)-curing agent to form semi-interpenetration polymer network structures after UV exposure. The influences of different curing agents on the thermal stability, adhesion performance, gel fraction, and viscoelastic of PSAs were explored. The results showed that the PSAs cured by L75, GA240, and TMPTA exhibited excellent heat resistance. Especially, when the content of L75 was 1.0 wt %, the PSAs could be peeled off substrate without residues on substrate surface after treatment at 170 °C for 4 h, while the nonmodified acrylic PSAs possessed residues after treatment from 110 °C. The cured PSAs adhesive performance was evaluated showing maximum 180° peel strength of 16.7 N/25 mm comparable to current PSAs. These resulting PSAs showed high heat resistance and they are suitable for a broad range of special fields. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47310.  相似文献   

    16.
    4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

    17.
    N,N,N′,N′-tetraglycidyl-4,4′-diaminodiphenylalkane epoxy resins with alkyl substituents on the methylene carbon were synthesized and characterized. The thermal and dynamic mechanical properties of these resins when cured with diaminodiphenylsulfone were compared with those of the cured unsubstituted epoxy resin. Although the resins have similar structures, the cured resin from the unsubstituted epoxy has the higher polymer decomposition temperature and glass transition temperature. The substituted epoxy resins have higher dynamic Young's moduli and loss moduli.  相似文献   

    18.
    Summary Thermally stable and optically active poly(amide-imide)s (PAIs) have been synthesized and their properties such as optical activity, solubility, thermal stability were studied. Polymers were synthesized by solution polymerization of 4,4’–(hexafluoroisopropylidene)-N,N’-bis-(phthaloyl-L-methionine) diacid chloride and various aromatic diamines by three different methods. The compounds obtained were characterized by elemental C, H and N analysis, solubility, FTIR, 1H NMR and 19F NMR spectroscopy. Thermogravimetric curves were also recorded. All data agree with the proposed structures.  相似文献   

    19.
    A series of some new fused thiopyrano[2,3-d]thiazole derivatives have been synthesized by a stereo-selective hetero-Diels-Alder reaction of 5-(2,4-dihydroxy-benzylidene)-4-thioxo-thiazolidine derivatives 3a,b with acrylonitrile, ethyl acrylate, N-phenylmale-imide, ω-nitrostyrene and N-phenyl-1, 3, 4-triazole-2,5-dione. 5-Amino-9-hydroxy-dihydro-benzopyrano[3′,4′:4,5]thiopyrano[2,3-d]thiazol-6-one derivatives 14a,b have been synthesized by Michael addition of 3a,b with malononitrile. Structures and conceivable mechanisms are discussed.  相似文献   

    20.
    Thermostable polyamideimides with inherent viscosity of 1.02–1.50 dL/g were synthesized from reacting of diamine-terminated aromatic amide prepolymer with various diisocyanate terminated imide prepolymers. The imide prepolymer was prepared by using 4,4′-diphen-ylmethane diisocyanate to react with 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 3,3′,4,4′ sulfonyl diphthalic anhydride, or 4,4′-oxydiphthalic anhydride using the direct one-pot method to improve their solubility. Almost all of the polyamideimides were generally soluble in a wide range of organic solvents such as N,N-dimethylformamide, N,N-dimeth-ylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and pyridine at room temperature. Polymers with high imide content required high temperatures to dissolve. All polyamide-imides had a glass transition temperature of 223–352°C and showed a 10% weight loss temperature of 415–575°C in air and 424–583°C in nitrogen atmosphere. The tensile strength, elongation at break, and initial modulus of polymer films ranged from 61 to 108 MPa, 5 to 10% and 1.54 to 2.50 GPa, respectively. These copolymers were partly crystalline in structure as shown by X-ray pattern. © 1996 John Wiley & Sons, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号