首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we investigate experimentally and analytically the mechanical properties of a natural fiber quasi-isotropic triaxially braided composite. The composite is prepared from triaxially braided regenerated cellulose fibers and a high-bio-content epoxy resin system using a resin infusion process. Simultaneous mechanical loading, digital image correlation, and acoustic emission tests were performed on notched and unnotched specimens to understand the tensile behavior of the composites and the initiation and propagation of damage. Experimental results were compared with the effective tensile properties determined using an analytical model. The model is a discrete three-layer analytical representation based on a mechanics transformation-based representation of the quasi-isotropic braided layers. The model is used to determine the elastic stiffness and Poisson effects based on the constituent properties such as the fiber volume fractions, the waviness of the bias tows, and the relative thickness of the braided preform. The experimental results show the analytical model's ability in predicting the composite's elastic properties. The unique fabric architecture is found to have a large influence on the strength properties across the different specimen geometries investigated.  相似文献   

2.
The wear behaviour of composite materials, sliding under dry conditions against smooth steel counterface, has been investigated. The composite materials consisted of glass woven fabric reinforcing three different systems of matrix: epoxy resin, epoxy resin filled with powders of silica and epoxy resin filled with powders of tungsten carbide. The powders were mixed in a volumetric fraction of 6% with the epoxy resin. Three laminates were manufactured by hand lay up technology. The sliding tests have been conducted on the specimens, cut from the three laminates, with a pin on disk apparatus. The results put in evidence different wear behaviours of the composite materials observed at different values of sliding speed and pressure. The presence of different wear mechanisms has been appreciated by SEM-micrographic examinations.  相似文献   

3.
试验制备了三维编织四向结构、五向结构和六向结构的玻璃纤维预制件增强环氧树脂梁的复合材料试样,每种试样包含20°、30°和40°三个编织角度.研究了编织结构和编织角参数对复合材料低速冲击及冲击后压缩性能的影响,分析了损伤后的试样形貌及破坏情况.试验结果表明:编织参数对复合材料的损伤容限影响较显著;编织角相同时,五向结构具有较高的CAI强度,而六向结构则表现出较好的冲击韧性;编织结构相同时,30°编织角试样的抗冲击性能较好;同时,冲击后压缩试样表现出脆性断裂特征.  相似文献   

4.
三向编织玻璃/环氧复合材料刚度性能   总被引:1,自引:0,他引:1  
通过实验研究了三向编织玻璃/环氧复合材料的刚度性能 , 并考虑编织角和试件宽度参数的影响 , 探讨了拉伸和压缩刚度性能的差异。实验结果表明 : 在同一纤维体积分数条件下 , 随着编织角的增大 , 试件的纵向弹性模量有所减小 , 泊松比 (在编织角约大于 35° 时) 也有所减小 ; 宽度为两倍和三倍单胞宽度的试件的刚度性能基本相同; 试件的纵向弹性模量和泊松比远大于横向弹性模量和泊松比; 拉伸和压缩时试件的弹性模量和泊松比基本接近 ; 在横向拉伸和压缩时试件的应力2应变曲线具有明显的非线性特征。实验结果为编织复合材料结构设计提供了数据参考。   相似文献   

5.
Bond-phase defects in laminates can affect the mechanical properties of laminate composites. In this study, the effects of adhesion area, number of glue spots, and bond thickness on the effective Young's modulus of adhered microscope glass slides have been investigated. Three different adhesive agents (super glue, epoxy cement, and epoxy resin) were used to explore the effect of bond-phase defects upon adhesion in laminates. The elastic moduli of single glass slides, unadhered glass slide pairs, glass slide/glue composite specimens and epoxy resin specimens were non-destructively determined by a sonic resonance technique. The change of Young's modulus of adhered glass slides was monitored while adhesion area per cent ranged from 0.35%–100%. Trends in the Young's moduli of glass slide/glue composite specimens have been analysed by a least-squares best-fit procedure to two empirical equations. Qualitative explanations for the observed trends are discussed in this paper.  相似文献   

6.
Experimental behaviour of bolted joints in triaxial braided (0°/±45°) carbon fibre/epoxy composite laminates with drilled and moulded-in fastener holes has been investigated in this paper. Braided laminates were manufactured by vacuum infusion process using 12 K T700S carbon fibres (for bias and axial tows) and Araldite LY-564 epoxy resin. Moulded-in fastener holes were formed using guide pins which were inserted in the braided structure prior to the vacuum infusion process. The damage mechanism of the specimens was investigated using ultrasonic C-Scan technique. The specimens were dimensioned to obtain a bearing mode of failure. The bearing strength of the specimens with moulded-in hole was reduced in comparison to the specimens with drilled hole, due to the increased fibre misalignment angle following the pin insertion procedure. An improvement on the bearing strength of moulded-in hole specimens might be developed if the specimen dimensions would be prepared for a net-tension mode of failure where the fibre misalignment would not have an effect as significant as in the case of bearing failure mode, but this mode should be avoided since it leads to sudden catastrophic failures.  相似文献   

7.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

8.
Recently, the design and the manufacture of light robot end effectors with high stiffness have become important in order to reduce the deflection due to the self-weight and weight of glass panel, a part of LCD, as the size of glass panels as well as robot end effectors increases. The best way to reduce the deflection and vibration of end effectors without sacrificing the stiffness of end effectors is to employ fiber reinforced composite materials for main structural materials because composite materials have high specific stiffness and high damping. In this work, the end effector for loading and unloading large glass panels were designed and manufactured using carbon fiber epoxy composite honeycomb sandwich structures. Finite element analysis was used along with an optimization routine to design the composite end effector. A box type sandwich structure was employed to reduce the shear effect arising from the low modulus of honeycomb structure. The carbon fiber epoxy prepreg was hand-laid up on the honeycomb structure and cured in an autoclave. A special process was used to reinforce the two sidewalls of the box type sandwich structure. The weight reduction of the composite end effector was more than 50% compared to the weight of a comparable aluminum end effector. From the experiments, it was also found that the static and dynamic characteristics of the composite end effector were much improved compared to those of the aluminum end effector.  相似文献   

9.
Auxetic materials are a class of materials that expand transversely when stretched longitudinally. Recently, auxetic materials are gaining special interest in the technical sectors mainly due to their attractive mechanical behavior. This paper reports, for the first time, the development of auxetic structures from composite materials and the characterization of their auxetic as well as mechanical properties. Five different auxetic structures were developed varying their structural angle using core reinforced braided composite rods, containing glass fibers for axial reinforcement, polyester filaments for braided structure and epoxy resin as the matrix. Auxetic behavior of these structures was studied in a tensile testing machine using an image-based tracking method. Additionally, an analytical model was used to calculate Poisson’s ratio of these structures. According to experimental and analytical results, auxetic behavior and tensile characteristics of these structures were strongly dependant on their initial geometric configuration (i.e. structural angle). These novel auxetic structures exhibited Poisson’s ratio in the range of −0.30 to −5.20.  相似文献   

10.
The major objective of this study was to determine the fracture toughness and fracture surface energy of epoxy, epoxy/fly-ash, epoxy/carbon fibre, epoxy/carbon fibre/fly-ash, epoxy/glass fibre and epoxy/glass fibre/fly-ash composites. The quality of composite specimens was evaluated by the ultrasonic method. The results show that a fly-ash particle can arrest the crack path and thus improve the fracture properties of fibre reinforced plastic (FRP) composites. The results of this study have further significance in view of the fact that fly-ash powder is far cheaper than carbon fibre, glass fibre and epoxy resin.  相似文献   

11.
This paper is part of a series of fractographic studies on fiber-reinforced polymer composites submitted to compression, which attempts to fill the gap in the composite failure analysis. Here, the effect of the hygrothermal conditioning is assessed for composite laminates manufactured from a carbon fiber/epoxy resin prepregs, which used plain weave fiber arrangement. The laminate was trimmed into compression test specimens, according to the ASTM D3410 standard. After the test, the aspects of the failure were investigated using a scanning electron microscope, so the compression failure modes could be identified. The fractographic analysis indicates that the lower compressive strength of the conditioned specimens was caused by a decrease in the stiffness of the polymer matrix, due to the plasticizing effect of the moisture exposure.  相似文献   

12.
《Composites》1995,26(9):661-667
The polymeric matrix in a fibre-reinforced composite serves to bind the fibres together, transfer load to the fibres and protect them against environmental attack and damage due to handling. The matrix has a strong influence on several mechanical properties of the composite such as transverse modulus and strength, impact resistance, shear properties and properties in compression. This paper describes the results of an experimental study to determine the effect of resin (matrix) on the post-impact compressive behaviour of carbon fibre woven laminates. Three new low temperature cure (50–125°C) epoxy resins are examined: an unmodified (LTM12), a rubber-modified (LTM25) and a thermoplastic toughened epoxy resin (MT8E). Note, however, that the first two are post-cured at 190°C. Velocities and impact energies were used to simulate momenta typical of low velocity impact hazards associated with aircraft in-service. Measurements of impact damage and damage growth during compression are made using ultrasonic C-scanning and penetrant-enhanced X-ray radiography techniques. For low impact energies the superior performance of the thermoplastic toughened epoxy is confirmed. Its residual compressive strength compares favourably with that obtained for high strength carbon fibre/epoxy laminates manufactured from unidirectional sheets cured at 190°C.  相似文献   

13.
通过正交试验新研制出一种可以与玻璃纤维/BA9913环氧树脂预浸料低温共固化的高阻尼黏弹性材料,提出使用四氢呋喃(THF)作为溶剂,将该高阻尼材料制成黏弹性材料溶液。采用双面刷涂工艺,将玻璃纤维/BA9913环氧树脂复合材料制成带阻尼薄膜的预浸料,按照设计的铺层根据热压罐固化工艺制成嵌入式低温共固化高阻尼复合材料试件。模态试验和层间剪切试验验证了本文所提出制作工艺和黏弹性材料组分的有效性,试件一阶模态损耗因子可达7.2%。为嵌入式低温共固化高阻尼复合材料的广泛使用奠定了基础。   相似文献   

14.
In the present work, the adhesion between an impregnated hemp yarn and the epoxy matrix was investigated. The micromechanical tests usually used to characterise the fibre/matrix interface were adapted to the yarn/matrix interface. Single yarn composite specimens with yarn axis at 0° were manufactured and submitted to fragmentation tests to determine the experimental interfacial shear strength (IFSS). Specific single yarn composite specimens with yarn axis at 90° from the loading direction were also tested to track by digital image correlation the strain fields in the yarn, in the resin and at the yarn/matrix interface. A finite element analysis was developed and optimised to simulate the fragmentation process and provides a conservative value of IFSS.  相似文献   

15.
In this study, composite plates were manufactured by hand lay-up process with epoxy matrix (DGEBA) reinforced with Kevlar fiber plain fabric and Kevlar/glass hybrid fabric, using to an innovative architecture. Results of the mechanical properties of composites were obtained by tensile, bending and impact tests. These tests were performed in the parallel direction or fill directions of the warp and in a 90° direction. FTIR was used in order to verify the minimum curing time of the resin to perform the mechanical tests, and scanning electron microscopy was used to observe reinforcement and matrix fractures. Composites with Kevlar/glass hybrid structure in the reinforcing fabric showed the better results with respect to specific mechanical strength, as well as bending and impact energy.  相似文献   

16.
The paper reports the results of a project aiming to obtain multifunctional binary and ternary polymer nanocomposites with enhanced mechanical and anti-microbial properties. To this end a DGEBA-based epoxy resin is loaded using montmorillonite clays and later used as matrix for glass fibre reinforced laminates. Both binary and ternary nanomodified specimens are manufactured and subjected to mechanical testing. An accurate analysis of the effect of nanomodification on the biological activity is carried out as well.  相似文献   

17.
为研究纳米改性对复合材料力学性能的影响,以纳米黏土改性环氧树脂与固化剂混合胶液为基体,以三维正交机织玻璃纤维织物为增强体,利用真空辅助树脂传递模压工艺(Vacuum assisted resin transfer molding,VARTM),制备纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料。分别测试不同质量分数(1wt%、2wt%、3wt%、4wt%)纳米黏土改性复合材料沿0°和90°方向的弯曲和拉伸性能。结果表明:当纳米黏土质量分数为1wt%时,复合材料弯曲强度最大,沿0°和90°方向的弯曲强度分别增大了约7.21%和13.71%,弯曲模量分别增大了约5.69%和16.64%。当纳米黏土质量分数为3wt%时,复合材料拉伸强度最大,沿0°和90°方向的拉伸强度分别增大了约24.96%和27.93%,拉伸模量分别增加了约21.35%和13.26%。这是由于纳米黏土呈纳米尺度以片层状分散于环氧树脂中,增加了两相间的接触面积,提高纤维/树脂界面的结合力,进而增强了复合材料的力学性能。   相似文献   

18.
Poly(styrene-co-acrylonitrile) (SAN) was used to modify diglycidyl ether of bisphenol-A (DGEBA) type epoxy resin cured with diamino diphenyl sulfone (DDS) and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRPs) in order to get improved mechanical and thermal properties. E-glass fibre was used as the fibre reinforcement. The morphology, dynamic mechanical and thermal characteristics of the systems were analyzed. Morphological analysis revealed heterogeneous dispersed morphology. There was good adhesion between the matrix polymer and the glass fibre. The dynamic moduli, mechanical loss and damping behaviour as a function of temperature of the systems were studied using dynamic mechanical analysis (DMA). DMA studies showed that DDS cured epoxy resin/SAN/glass fibre composite systems have two Tgs corresponding to epoxy rich and SAN rich phases. The effect of thermoplastic modification and fibre loading on the dynamic mechanical properties of the composites were also analyzed. Thermogravimetric analysis (TGA) revealed the superior thermal stability of composite system.  相似文献   

19.
In this study, the mechanical characteristics of composite laminates with embedded optical fiber sensors were evaluated to investigate the effect of embedded optical fiber on the mechanical properties of composite laminates under the static tensile and the low cycle fatigue load. Testing specimens were fabricated with glass fiber/epoxy composites with embedded optical fiber sensors to observe initiation and growth of damage in the specimens and laser signal behavior transmitted through the optical fiber visually and directly. By using this transparency of glass fiber/epoxy composites, the damage of sensors and associated laser signal behavior was observed. Under the static load, the embedded optical fibers do not have significant effect on the stiffness and the strength, while the embedded optical fibers show significant effect on the fatigue life of composite specimens. Especially, the embedded optical fiber sensors show the very low resistance to the fatigue load.  相似文献   

20.
在0.1~0.35 MPa的树脂注射压力条件下,制备了孔隙含量不同的玻璃纤维连续毡/E51环氧树脂的树脂传递模塑(RTM)工艺试件,采用超声法、金相法和密度烧失法测量试件的孔隙含量。讨论了孔隙含量随树脂注射压力变化以及孔隙含量对RTM玻璃纤维/环氧树脂复合材料超声参数和力学性能的影响规律。结果表明,树脂注射压力的变化对孔隙含量产生明显影响,注射压力由0.1 MPa增加到0.35 MPa过程中,玻璃纤维连续毡/E51环氧树脂复合材料的孔隙含量从9.95%减小至3.73%。超声特征参数随孔隙含量的增加呈近于线性递增,尤其是超声非线性特征参数的变化更加明显,超声特征参数的变化可评价复合材料孔隙含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号