首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Materialia》2003,51(17):5151-5158
Secondary ageing of age-hardenable aluminium alloys occurs at temperatures below the solvus of GP zones after a preliminary ageing at a higher temperature. The phenomenon has technological interest, as it may be included in heat treatments giving a substantial benefit on the mechanical properties. In the present work, positron annihilation lifetime spectroscopy (PALS) is applied in combination with Vickers hardness measurements for an investigation on secondary ageing of Al–4wt.%Zn–3wt.%Mg–xAg, where x=0, 0.1, 0.2, 0.3, 0.5 wt.%. Ageing regimes have been characterised by the substantially different evolutions that are observed. The results shed light on the interplay between the formation of coherent solute aggregates (clusters or GP zones) and the precipitation of semi-coherent or incoherent precipitates, which are in competition to control the hardening effects. PALS data show that secondary ageing in the ternary Al–Zn–Mg alloys produces coherent aggregates even in the presence of a well-developed stage of semi-coherent or incoherent precipitation that is obtained if the alloys are first aged to peak hardness. In the presence of Ag, on the contrary, the effects of coherent aggregation during secondary ageing are observed only if the preliminary ageing is interrupted well before reaching peak hardness.  相似文献   

2.
《Acta Materialia》1999,47(5):1537-1548
The solute clusters and the metastable precipitates in aged Al–Mg–Si alloys have been characterized by a three-dimensional atom probe (3DAP) and transmission electron microscopy (TEM). After long-term natural aging, Mg–Si co-clusters have been detected in addition to separate Si and Mg atom clusters. The particle density of β″ after 10 h artificial aging at 175°C varies depending on pre-aging conditions, i.e. pre-aging at 70°C increases the number density of the β″ precipitates, whereas natural aging reduces it. This suggests that the spherical GP zones formed at 70°C serve as nucleation sites for the β″ in the subsequent artificial aging, whereas co-clusters formed at room temperature do not. Atom probe analysis results have revealed that the Mg:Si ratios of the GP zones and the β″ precipitates in the alloy with excess amount of Si are 1:1, whereas those in the Al–Mg2Si quasi-binary alloy are 2:1. Based on these results, the characteristic two-step age-hardening behavior in Al–Mg–Si alloys is discussed.  相似文献   

3.
4.
《Acta Materialia》2001,49(17):3443-3451
The structure of GP-zones in an industrial, 7xxx-series Al–Zn–Mg alloy has been investigated by transmission electron microscopy methods: selected area diffraction, conventional and high-resolution imaging. Two types of GP-zones, GP(I) and (II) are characterized by their electron diffraction patterns. GP(I)-zones are formed over a wide temperature range, from room temperature to 140–150°C, independently of quenching temperature. The GP(I)-zones are coherent with the aluminum matrix, with internal ordering of Zn and Al/Mg on the matrix lattice, suggested to be based on AuCu(I)-type sub-unit, and anti-phase boundaries. GP(II) are formed after quenching from temperatures above 450°C, by aging at temperatures above 70°C. The GP(II)-zones are described as zinc-rich layers on {111}-planes, with internal order in the form of elongated <110> domains. The structural relation to the η′-precipitate is discussed.  相似文献   

5.
To clarify the thermodynamic stability of a Mg-based long-period stacking ordered (LPSO) structure, we systematically study the energetic preference for alloys on multiple stacking sequences with different compositions for random mixing of constituent elements, Mg, Y, and Zn, based on special quasirandom structure (SQS). Through calculation of the formation free energy of SQSs, it was found that the Mg–Y–Zn alloy exhibits phase separation into Mg- and Y–Zn- rich phases, which is consistent with previous theoretical studies. The bulk modulus of SQSs for various compositions, stacking sequences, and atomic configurations is approximately 35 GPa, i.e., it does not show significant dependence on the atomic arrangements, which therefore means that there are not significant differences among the effects of phonon on the stability of each structure in the LPSO structure. Introducing a stacking fault into hcp stacking sequence results in the acquisition of a “negative” energy, which indicates the profound relationship between the introduction of stacking faults and the formation of an LPSO structure.  相似文献   

6.
Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)_2 eutectic phases, and fine intermetallic compounds g(MgZn_2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)_2, intermetallic g(MgZn_2), and h(Al_2Cu). During homogenization at 450 °C, fine g(MgZn_2) can dissolve into matrix absolutely. After homogenization at 450 °C for 24 h, Mg(Cu, Zn, Al)_2 phase in 7136 alloy transforms into S(Al_2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys.  相似文献   

7.
《Acta Materialia》2001,49(16):3129-3142
We demonstrate how first-principles total energy calculations may be used to elucidate both the crystal structures and formation enthalpies of complex precipitates in multicomponent Al alloys. For the precipitates, S(Al–Cu–Mg), η′ (Al–Zn–Mg), and Q(Al–Cu–Mg–Si), energetics were computed for each of the models of the crystal structures available in the literature allowing a critical assessment of the validity of the models. In all three systems, energetics were also calculated for solid solution phases as well as other key phases (e.g., equilibrium phases, GP zones) in each precipitation sequence. For both the S and η′ phases, we find that recently proposed structures (based on electron microscopy) produce unreasonably high energies, and thus we suggest that these models should be re-evaluated. However, for all three precipitates, we find that structures based on X-ray diffraction refinements provide both reasonable energetics and structural parameters, and therefore the first-principles results lend support to these structural refinements. Further, we predict energy-lowering site occupations and stoichiometries of the precipitate phases, where experimental information is incomplete. This work suggests that first-principles total energy calculations can be used in the future as a complementary technique with diffraction or microscopy for studying precipitate structures and stabilities.  相似文献   

8.
9.
The effects of Cu and Al substituting for Zn within bulk samples of η phase (nominally MgZn2) have been studied by laboratory X-ray powder diffraction and nuclear magnetic resonance. Increasing Al concentration causes both of the η phase lattice parameters to increase linearly, while increasing Cu concentration causes both parameters to decrease linearly. These effects also appear to combine in a linear fashion if both Al and Cu are substituted into the MgZn2 structure, particularly in the case of the a lattice parameter. Al was found to substitute evenly onto both Zn sites, while Cu substitutes preferentially onto the 6(h) site at low Cu concentrations, before causing significant disruptions to the structure at concentrations above 1.1 at.%, leading to the transition to long period stacking phases at the expense of η. High-resolution synchrotron powder diffraction from a commercial Al–Zn–Mg–(Cu) alloy revealed that the η phase precipitates with lattice parameters that are substantially smaller than for pure MgZn2, indicating Cu concentrations of at least 8.9 at.% and probably higher. It is likely that the Al matrix provides a mechanical constraint on the formation of any long period stacking phases and allows the η phase to exist in these alloys with such high Cu concentrations.  相似文献   

10.
《Acta Materialia》2000,48(15):3951-3962
A fast numerical model has been developed for the quantitative prediction of microsegregation during solidification of ternary alloys. Considering a small volume of uniform temperature, the back-diffusion equations in the primary solid phase are solved in a 1-dimensional configuration using an implicit finite difference formulation with a Landau transformation onto a fixed [0,1] interval. The other phases which may precipitate during solidification are supposed to be stoichiometric and at equilibrium while the liquid is in a state of complete mixing. These calculations are coupled with phase diagram data through the use of mapping files: the liquidus surface, the monovariant lines and all the pertaining information are mapped through calls to Thermo-Calc [B. Sundman, B. Jansson and J. O. Andersson, CALPHAD, 9, 153 (1985)], prior to starting the microsegregation calculation itself. This very efficient microsegregation model can thus be coupled directly to macrosegregation computations performed at the scale of a whole casting: from the average enthalpy and concentrations variations computed at each mesh point of a casting during one time step, this microsegregation model is capable of predicting the variations of temperature, of the volume fractions of the various phases, of the liquid concentrations and of the average density. The efficiency of this coupling between microsegregation calculation and thermodynamic mapping files is demonstrated in the particular case of the Al–Mg–Si system.  相似文献   

11.
1.  In alloys of the Al–Zn–Mg system (at Zn>Mg) a zone stage in the decomposition process of the solid solution can be clearly observed during artificial aging.
2.  In alloys of the Al–Mg–Zn system having increased concentrations of the Mg, the zone stage actually occurs simultaneously with the phase formation process.
Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 24–26, December, 1992.  相似文献   

12.
The possibility of determining the hot cracking index using the calculated value of the effective solidification range is investigated for multicomponent cast aluminium alloys based on the Al–Mg–Zn system with Mn, Ni, Fe and Si additives. The upper limit of the effective solidification range was calculated as the temperature of formation of a 65?wt-% solid phase using the Sheil model. The linear relationship of the hot cracking index and the effective solidification range in the industrial and experimental multicomponent alloys based on the Al–Mg–(Zn) system is demonstrated.  相似文献   

13.
Abstract

In this study, the microstructure and mechanical properties of as cast Mg–x Sn–5Al–1Zn alloys were investigated. The microstructures of the alloys were characterised by the presence of Mg2Sn and Mg17Al12 precipitates. The greatest tensile strength and elongation were obtained at the alloy containing 5 wt-%Sn at room temperature. Microhardness of the alloys and volume fraction of the Mg2Sn precipitates increased with increasing Sn content. Fractographic analysis demonstrated that dimple and cleavage facet were dominant mechanisms of these alloys tested at room and elevated temperature. The portion of cleavage facet was increased with the increment of Sn at the room and elevated temperatures.  相似文献   

14.
Processing by equal-channel angular pressing (ECAP) affects the morphology of η precipitates in an Al–Zn–Mg–Cu (Al-7136) alloy. It is shown by transmission electron microscopy that ECAP changes the orientation of precipitates and this influences the atomic configuration and the interfacial energy at the η/α-Al interfaces. Consequently, η precipitates adopt an isotropic growth mode and evolve into equiaxed particles. A three-dimensional atom probe analysis demonstrates that large η precipitates formed in different numbers of ECAP passes are of similar composition. The coalescence of smaller precipitates, rather than the fragmentation of larger precipitates, dominates the precipitate evolution.  相似文献   

15.
The composition of precipitates in three alloys of the Al–Zn–Mg–Cu system has been investigated for different heat treatments, including peak-aged and over-aged states as well as near-equilibrium conditions, by combining atom probe tomography and systematic anomalous small-angle X-ray scattering experiments. We show that the concentration of Cu in the precipitates changes during heat treatments and is alloy dependent. At low ageing temperature (120 °C) the Cu content in the precipitates is close to the alloy content. The precipitate Cu content is shown to increase with increasing temperature and Cu alloy content. We show that in near-equilibrium conditions the precipitate compositions are 33 at.% in Mg, about 15 at.% in Al, about 13 at.% in Cu and balance Zn. Our results strongly suggest that the gradual incorporation of Cu in the precipitates during the heat treatment is essentially related to the slower diffusivity of this element in aluminium.  相似文献   

16.
17.
《Acta Materialia》1999,47(2):489-500
Microstructure and microsegregation in two directionally solidified Al alloys, Al–3.9Cu–0.9Mg and Al–15Cu–1Mg (in wt%), were investigated for cooling rates between 0.78 and 0.039 K/s. Transverse and longitudinal sections were examined to exhibit dendritic microstructures. Fractions of solids formed were determined using quantitative image analysis and solute redistribution in the primary phase was determined using area scans. The model employed to calculate microsegregation is based on the Scheil model but including solid-state diffusion, dendrite arm coarsening and undercooling of the dendrite tip and the formation of eutectic. The model-calculated results were found to be in good agreement with the experimentally determined concentration distributions in the primary α phase and the amounts of phases formed. It was found that the dendrite morphology was best described by a cylindrical arm geometry and that the accuracy of the phase diagram could have a significant influence on the microsegregation predictions. For the alloy with low copper content, two types of embedded droplets were observed.  相似文献   

18.
《Acta Materialia》2001,49(14):2701-2711
The crystal structure of the equilibrium intermetallic Φ phase formed in a Mg–Zn–Al casting alloy has been characterised using transmission electron microscopy. Electron diffraction patterns recorded from particles of the Φ phase in the casting alloy can be well indexed according to a primitive orthorhombic unit cell, with lattice parameters a=0.90 nm, b=1.70 nm, and c=1.97 nm. Examination of the whole pattern symmetry of principal zone axis diffraction patterns indicates a space group of Pbcm. A model for the decoration of the unit cell of the Φ phase is proposed, in which the Mg5(Zn,Al)12 Friauf polyhedron is the key structural unit. The Zn and Al atoms are all in icosahedral coordination, but their icosahedral shells are distorted due to the presence of Mg atoms. A total of 84 Mg atoms and 68 Zn/Al atoms can be accommodated in the orthorhombic unit cell, resulting in a formula of Mg21(Zn,Al)17 that is consistent with the composition obtained experimentally. Computer simulations of electron diffraction patterns provide very good agreement with experimental observations.  相似文献   

19.
Abstract

Bead shape, microstructure changes and mechanical properties of laser metal inert gas (MIG) welded dissimilar Mg–Al–Zn alloys (from AZ31B to AZ61) are studied. The results show that heat ratio of arc to laser (HRAL) and welding speed are dominant parameters for achieving good tensile strength efficiency and elongation property. From AZ31B to AZ61, microstructure changes are observed as cellular dendrites to equiaxed dendrites and fish bone dendrites in the upper part of hybrid weld. Besides, at weld centreline, the solidification structure of lower part is finer than that of upper part. In this study, the maximum tensile strength efficiency and elongation reached 97·6 and 7% respectively. When the HRAL matches welding speed well, the joint achieves higher tensile strength with 45° shearing fracture at heat affected zone because of fewer defects. However, when utilising too low HRAL or fast welding speed, the joints show lower tensile strengths with nearly vertical fracture at fusion zone.  相似文献   

20.
In the present study, corrosion-protective microarc oxidation (MAO) coatings were prepared on AZ31B, AZ80, and ZK60 cast magnesium alloy substrates in an alkaline silicate electrolyte. The corrosion performances of the uncoated and MAO-coated alloys were investigated using electrochemical and salt spray chamber corrosion tests. The microstructure characterization and experimental results show that among the three alloys studied, the ZK60 Mg alloy exhibited the best and AZ31B the least corrosion resistance under the salt spray conditions. The MAO coating provided robust corrosion protection of the Mg substrates and resulted in a significant decrease in the corrosion rate of the alloys by 3–4 orders of magnitude. The MAO coating on ZK60 alloy showed better corrosion protectiveness than that on the AZ series alloys due to the incorporation of different alloying elements in the coating, especially the Zn and Al elements, which are from the Mg substrate. The corrosion performances and mechanisms of the uncoated and MAO-coated Mg alloys are interpreted in terms of the microstructure and phase/chemical compositions of both the substrates and coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号