首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In this paper, the microstructural evolution of IMCs in Sn–3.5Ag–X (X = 0, 0.75Ni, 1.0Zn, 1.5In)/Cu solder joints and their growth mechanisms during liquid aging were investigated by microstructural observations and phase analysis. The results show that two-phase (Ni3Sn4 and Cu6Sn) IMC layers formed in Sn–3.5Ag–0.75Ni/Cu solder joints during their initial liquid aging stage (in the first 8 min). While after a long period of liquid aging, due to the phase transformation of the IMC layer (from Ni3Sn4 and Cu6Sn phases to a (Cu, Ni)6Sn5 phase), the rate of growth of the IMC layer in Sn–3.5Ag–0.75Ni/Cu solder joints decreased. The two Cu6Sn5 and Cu5Zn8 phases formed in Sn–3.5Ag–1.0Zn/Cu solder joints during the initial liquid aging stage and the rate of growth of the IMC layers is close to that of the IMC layer in Sn–3.5Ag/Cu solder joints. However, the phase transformation of the two phases into a Cu–Zn–Sn phase speeded up the growth of the IMC layer. The addition of In to Sn–3.5Ag solder alloy resulted in Cu6(Snx,In1?x)5 phase which speeded up the growth of the IMC layer in Sn–3.5Ag–1.5In/Cu solder joint.  相似文献   

2.
The growth behavior of reaction-formed intermetallic compounds (IMCs) at Sn3.5Ag0.5Cu/Ni and Cu interfaces under thermal-shear cycling conditions was investigated. The results show that the morphology of (Cu x Ni1–x )6Sn5 and Cu6Sn5 IMCs formed both at Sn3.5Ag0.5Cu/Ni and Cu interfaces gradually changed from scallop-like to chunk-like, and different IMC thicknesses developed with increasing thermal-shear cycling time. Furthermore, Cu6Sn5 IMC growth rate at the Sn3.5Ag0.5Cu/Cu interface was higher than that of (Cu x Ni1–x )6Sn5 IMC under thermal-shear cycling. Compared to isothermal aging, thermal-shear cycling led to only one Cu6Sn5 layer at the interface between SnAgCu solder and Cu substrate after 720 cycles. Moreover, Ag3Sn IMC was dispersed uniformly in the solder after reflow. The planar Ag3Sn formed near the interface changed remarkably and merged together to large platelets with increasing cycles. The mechanism of formation of Cu6Sn5, (Cu x Ni1–x )6Sn5 and Ag3Sn IMCs during thermal-shear cycling process was investigated.  相似文献   

3.
The formation of intermetallic compounds and the shear strength of Sn–Zn–Bi solder alloys with various (0, 1, 3, 5 and 7 wt%) weight percentages of Sn–Ag–Cu were investigated on Au/Ni metallized Cu pads depending on the number of reflow cycles. In Sn–Zn–Bi solder joints, scallop-shaped AuZn3 intermetallic compound (IMC) particles were found at the interfaces and in the solder ball regions, fine Bi- and needle-shaped Zn-rich phase were observed in the Sn matrix. After Sn–Ag–Cu additions, an additional Ag–Zn intermetallic compound layer was adhered to the top surface of the AuZn3 layer at the interface and fine spherical-shaped AgZn3 intermetallic compound particles were detected in the solder ball regions together with Bi- and Zn-rich phase volumes. After the addition of Sn–Ag–Cu, the shear strength of Sn–Zn–Bi solder joints increased due to the formation of the fine AgZn3 intermetallic compound particles. The shear strengths of Sn–Zn–Bi and Sn–Zn–Bi/7 wt% Sn–Ag–Cu solder joints after one reflow cycle were about 44.5 and 53.1 MPa, respectively and their shear strengths after eight reflow cycles were about 43.4 and 51.6 MPa, respectively.  相似文献   

4.
为了改善Sn-58Bi低温钎料的性能,通过在Sn-58Bi低温钎料中添加质量分数为0.1%的纳米Ti颗粒制备了Sn-58Bi-0.1Ti纳米增强复合钎料。在本文中,研究了纳米Ti颗粒的添加对-55~125 oC热循环过程中Sn-58Bi/Cu焊点的界面金属间化合物(IMC)生长行为的影响。研究结果表明:回流焊后,在Sn-58Bi/Cu焊点和Sn-58Bi-0.1Ti/Cu焊点的界面处都形成一层扇贝状的Cu6Sn5 IMC层。在热循环300次后,在Cu6Sn5/Cu界面处形成了一层Cu3Sn IMC。Sn-58Bi/Cu焊点和Sn-58Bi-0.1Ti/Cu焊点的IMC层厚度均和热循环时间的平方根呈线性关系。但是,Sn-58Bi-0.1Ti/Cu焊点的IMC层厚度明显低于Sn-58B/Cu焊点,这表明纳米Ti颗粒的添加能有效抑制热循环过程中界面IMC的过度生长。另外计算了这两种焊点的IMC层扩散系数,结果发现Sn-58Bi-0.1Ti/Cu焊点的IMC层扩散系数(整体IMC、Cu6Sn5和Cu3Sn IMC)明显比Sn-58Bi/Cu焊点小,这在一定程度上解释了Ti纳米颗粒对界面IMC层的抑制作用。  相似文献   

5.
Ni segregation in the interfacial (Cu,Ni)6Sn5 intermetallic layer of Sn-0.7Cu-0.05Ni/Cu BGA solder joints was investigated by using synchrotron micro X-ray fluorescence (XRF) analysis and synchrotron X-ray diffraction (XRD). Compared to Sn-0.7Cu/Cu BGA joints, Ni containing solder show suppressed Cu3Sn growth in both reflow and annealed conditions. In as-reflowed Sn-0.7Cu-0.05Ni/Cu BGA joints, Ni was relatively homogenously distributed within interfacial (Cu,Ni)6Sn5. During subsequent annealing, the diffusion of Ni in Cu6Sn5 was limited and it remained concentrated adjacent the Cu substrate where it contributes to the suppression of Cu3Sn formation at the interface between the Cu substrate and Cu6Sn5 intermetallics.  相似文献   

6.
J. Shen  Y.C. Chan  S.Y. Liu 《Acta Materialia》2009,57(17):5196-5206
The chemical interfacial reaction of Ni plates with eutectic Sn–3.5Ag lead-free solder was studied by microstructural observations and mathematical calculations. Compared with the Sn–3.5Ag–0.75Ni/Ni interfacial reaction, based on a simple model of the growth of the liquid/solid chemical compound layer, the growth mechanism of Ni3Sn4 in the Sn–3.5Ag/Ni interfacial reaction is discussed and presented. The growth process of Ni3Sn4 in the Sn/Ni liquid/solid reaction interface involves the net effect of several interrelated phenomena, such as volume diffusion, grain boundary diffusion, grain boundary grooving, grain coarsening, and dissolution into the molten solder. The growth time exponent n and morphology of Ni3Sn4 were found to be dependent on these factors.  相似文献   

7.
Sn–9Zn (in wt.%) solder ball was bonded to Cu pad, and the effect of aging on shear reliability was investigated. After reflow, the intermetallic compound (IMC) phase formed at the interface was Cu5Zn8, and the as-reflowed Sn–9Zn/Cu joint had sufficient shear strength. In the isothermal aging test, only Cu5Zn8 IMC was observed in the samples aged at temperatures between 70 and 120 °C. On the other hand, after aging at 150 °C for 250 h, Cu6Sn5 phase was observed at the interface between the interfacial Cu5Zn8 IMC layer and the Cu substrate. And, the layer-type Cu5Zn8 IMC layer was disrupted locally at the interface. In the ball shear test conducted after aging treatment, the shear strength significantly decreased after aging at all temperatures for initial 100 h, and then remained constant by further prolonged aging. The fracture mainly occurred at the interface between the solder and Cu5Zn8 IMC layer. The aged Sn–9Zn/Cu solder joint had an inferior joint reliability.  相似文献   

8.
The effect of adding 0.5-1.5 wt.% Zn to Sn-3.8Ag-0.7Cu (SAC) solder alloy during reflow and solid state ageing has been investigated. In particular, the role of the Zn addition in suppressing interfacial Intermetallic Compound (IMC) growth on Cu and Ni-P substrates has been determined. Solder-substrate couples were aged at 150 °C and 185 °C for 1000 h. In the case of 0.5-1.0 wt.% Zn on Cu substrate, Cu3Sn IMC was significantly suppressed and the morphology of Cu6Sn5 grains was changed, leading to suppressed Cu6Sn5 growth. In the SAC-1.5Zn/Cu substrate system a Cu5Zn8 IMC layer nucleated at the interface followed by massive spalling of the layer into the solder, forming a barrier layer limiting Cu6Sn5 growth. On Ni-P substrates the (Cu,Ni)6Sn5 IMC growth rate was suppressed, the lowest growth rate being found in the SAC-1.5Zn/Ni-P system. In all cases the added Zn segregated to the interfacial IMCs so that Cu6Sn5 became (Cu,Zn)6Sn5 and (Cu,Ni)6Sn5 became (Ni,Cu,Zn)6Sn5. The effect of Zn concentration on undercooling, wetting angles and IMC composition changes during ageing are also tabulated, and a method of incorporating Zn into the solder during reflow without compromising solder paste reflow described.  相似文献   

9.
《Intermetallics》2006,14(10-11):1375-1378
Mechanical and electrical properties of the Sn–37Pb/Cu joints were investigated in terms of the effect of intermetallic compound (IMC) layer growth. A layer of continuous scallop-shaped Cu6Sn5 IMC was formed at the interface between the solder and substrate after 1 reflow, while Cu3Sn IMC layer was formed after 3 reflows. The thickness of the total IMC layer increased as a function of cubic root of reflow time. The shear force of the solder joints did not vary much with the number of reflows. Only ductile failure mode was observed regardless of the number of reflows, and explaining well the shear force variations. The electrical resistivity of the BGA package was measured to investigate the relation between the microstructural variation and electrical properties of the solder joints. The electrical resistivity increased with the number of reflows.  相似文献   

10.
倒装LED回流焊接头组织的抗高温时效性能   总被引:1,自引:1,他引:0       下载免费PDF全文
以SAC305锡膏为钎料,通过回流焊实现了倒装LED与Cu/Ag、Cu/Ni/Au基板的互连.研究了两种接头界面微观组织在高温时效条件下的演变行为.结果表明,接头两侧界面组织间存在相互影响. Cu/Ni/Au基板中的Au在回流焊过程中溶解至体钎料内,对芯片侧Au-Sn金属间化合物的生长起到抑制效果.芯片侧Au-Sn金属间化合物的快速生长降低了体钎料中Sn的相对浓度,从而使体钎料中有利于基板侧IMC生长组元的相对浓度得到提升,促进基板侧IMC生长.相比较而言,在Cu/Ag基板上的回流焊试样抗高温时效性能较差.  相似文献   

11.
对比研究了超声作用和无超声作用下Ni/Sn/Ni钎焊界面金属间化合物的形成和演变规律。结果表明,无超声作用时,Ni/Ni_3Sn_4界面较为平直且致密,而Sn/Ni_3Sn_4界面被液态Sn钎料逐渐溶解而呈扇贝状,并且有少量Ni_3Sn_4分布在焊缝中。其次,界面金属间化合物(intermetallic compound, IMC)层厚度与时间呈抛物线关系,Ni_3Sn_4的生长受体扩散的控制。超声作用下,声空蚀作用使得界面Ni_3Sn_4发生溶解而形成很多沟槽,甚至在界面IMC的局部区域出现了"neck"状连接,重新为母材Ni原子向钎料的溶解打开了通道,在声流的辅助作用下促进母材的溶解。随着超声时间的增加,声空化作用将界面"neck"状连接的细长的Ni_3Sn_4晶粒打碎而进入焊缝,使得界面IMC逐渐减薄。进入焊缝的Ni_3Sn_4进一步在空化作用下溶解和破碎,最终大量细小的Ni_3Sn_4均匀分布在焊缝中。  相似文献   

12.
Abstract

This study investigates the influence of 0–1˙5 wt-%Cu addition on the microstructure and the intermetallic compound (IMC) formation of the as soldered Sn–3Ag–1˙5Sb–xCu (wt-%) solders and following thermal storage at 150°C for 0, 25, 200 and 600 h, with the intention of identifying the optimum Cu addition for industrial applications. The experimental results show that the melting point of Sn–3Ag–1˙5Sb–xCu solder decreases with Cu addition. For Cu additions of 1˙0 wt-% or higher, an IMC of Cu6Sn5 particles is dispersed throughout the matrix, resulting in a dispersion strengthening effect, and its size increases with the levels of Cu addition increasing. The coarsened long strip like Cu6Sn5 with a length of more than 100 μm growing from the upper interface of IMC layer into the solder matrix is observed in the solder with 1˙5 wt-%Cu addition after thermal storage. Cu6Sn5 grains in the IMC layer develop the ripening grains with a more hexagonal or polygonal shape and smooth edged flat surfaces instead of scallop shape. Additionally, the microhardness of each solder increases with Cu addition and decreases with increasing time of thermal storage at 150°C.  相似文献   

13.
The interaction between Cu6Sn5 particles in the bulk of a solder and a Ni substrate was examined during solid-state aging using Cu/Sn/Ni and Cu/Sn/Cu/Sn/Ni diffusion couples with initially thin Cu layers. The results clearly demonstrated that the (Cu,Ni)6Sn5 particles dispersed in the bulk solder decomposed in order for a ternary (Cu1−xNix)6Sn5 layer to grow at the solder/Ni interface during solid-state aging. The interaction between the (Cu,Ni)6Sn5 particles and the (Cu1−xNix)6Sn5 layer occurs owing to the driving force for the (Cu,Ni)6Sn5 compound to become saturated with Ni. A (Ni,Cu)3Sn4 layer forms at the (Cu1−xNix)6Sn5/Ni interface only after the Ni composition of the (Cu,Ni)6Sn5 phase in the bulk solder approaches that of the (Cu1−xNix)6Sn5 layer. Once the (Ni,Cu)3Sn4 layer has formed, it grows at an exceptionally rapid rate by consuming the (Cu1−xNix)6Sn5 and Sn layers, which can be problematic in solder joint reliability.  相似文献   

14.
This study focuses on the correlation between high-speed impact tests and the interfacial reaction in Sn-3.0Ag-0.5Cu-0.1Ni/Cu (wt%) and Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joints. Adding Ni into the Sn–Ag–Cu solder alters the interfacial morphology from scallop type to layer type and exhibits high shear strength after reflow in both solder joints. However, the shear strength of Sn-3.0Ag-0.5Cu-0.1Ni/Cu solder joints degrades significantly after thermal aging at 150 °C for 500 h. It is notable that Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joints still present higher shear strength after aging at 150 °C. The weakened shear strength in Sn-3.0Ag-0.5Cu-0.1Ni/Cu solder joints is due to stress accumulation in the interfacial (Cu,Ni)6Sn5 compound induced by the phase transformation from a high-temperature hexagonal structure (η-Cu6Sn5) to a low-temperature monoclinic structure (η'-Cu6Sn5). However, doping small amounts of Zn into (Cu,Ni)6(Sn,Zn)5 can inhibit the phase transformation during thermal aging and maintain strong shear strength. These experiments demonstrate that Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joints can act as a stable connection in the micro-electronic packaging of most electronic products at their average working temperatures.  相似文献   

15.
The influence of trace rare earth (RE) Ce addition on the microstructure, melting point and wettability of pure Sn as well as on the soldering reactions in Sn-xCe/Cu(Ni) solder joints was investigated. In bulk Sn-xCe solders, large β-Sn grains were observed with the Ce addition less than 0.2 wt%; while the β-Sn grain size decreased markedly when the Ce addition was 0.2 wt%, resulting in a refined microstructure. The addition of trace RE Ce had little effect on the melting temperature of the solders. Smaller wetting angles of Sn-xCe solders on both Cu and Ni substrates were measured when the samples were reflowed at a higher temperature. The Sn-0.2Ce solder owned the best wettability on Cu substrate. Scallop-like Cu6Sn5 intermetallic compound (IMC) grains formed at the Sn-xCe/Cu interfaces, while a continuous Ni3Sn4 IMC layer formed at each Sn-xCe/Ni interface. With the increase of Ce addition, the interfacial IMC grain size and the interfacial IMC layer thickness on both Cu and Ni substrates decreased gradually. The activity of Sn was lowered with the Ce addition, which depressed the growth of the interfacial IMC. In the current study, the Ce addition of 0.2 wt% exhibits the optimized performance.  相似文献   

16.
Abstract

In this study, various amounts of Ni particles were added in situ to Sn–3·5 wt-%Ag lead free solder to form new composite solders. Copper substrates were then dipped into these solders and aged at 150°C for 0, 25, 225, or 1000 h. The microstructure and microhardness of the as solidified solder and the aged solder/copper couples were investigated. Experimental results revealed that the addition of Ni particles increased the microhardness of the composite solder. Ni additions of less than 3 wt-% yielded a microstructure of β-Sn grains surrounded by a eutectic mixture of Ag3Sn and a Sn rich matrix. An intermetallic compound of Ni3Sn4 particles was dispersed throughout the eutectic. For 5 wt-%Ni addition, the Ni3Sn4 phase and the remaining Ni particles were agglomerated. In the case of copper substrate dipped with a thick layer of composite solder, water quenched and then aged at 150°C, the induced (Ni, Cu)3Sn4 particles coarsened and agglomerated. Additionally, the intermetallic (Cu, Ni)6Sn5 compound layer formed at the solder/Cu interface thickened with increasing Ni content.  相似文献   

17.
The present study details the microstructure evolution of the interfacial intermetallic compounds (IMCs) layer formed between the Sn-xAg-0.5Cu (x = 1, 3, and 4 wt.%) solder balls and electroless Ni-P layer, and their bond strength variation during aging. The interfacial IMCs layer in the as-reflowed specimens was only (Cu,Ni)6Sn5 for Sn-xAg-0.5Cu solders. The (Ni,Cu)3Sn4 IMCs layer formed when Sn-4Ag-0.5Cu and Sn-3Ag-0.5Cu solders were used as aging time increased. However, only (Cu,Ni)6Sn5 IMCs formed in Sn-1Ag-0.5Cu solders, when the aging time was extended beyond 1500 h. Two factors are expected to influence bond strength and fracture modes. One of the factors is that the interfacial (Ni,Cu)3Sn4 IMCs formed at the interface and the fact that fracture occurs along the interface. The other factor is Ag3Sn IMCs coarsening in the solder matrix, and fracture reveals the ductility of the solder balls. The above analysis indicates that during aging, the formation of interfacial (Ni,Cu)3Sn4 IMCs layers strongly influences the pull strength and the fracture behavior of a solder joint. This fact demonstrates that interfacial layers are key to understanding the changes in bonding strength. Additionally, comparison of the bond strength with various Sn-Ag-Cu lead-free solders for various Ag contents show that the Sn-1Ag-0.5Cu solder joint is not sensitive to extended aging time.  相似文献   

18.
《Acta Materialia》2007,55(2):737-752
A time dependence of the form t1/n with n > 3 was observed for the thickening kinetics of the Ni3Sn4 scallops formed in both the Sn–58Bi/Ni and Sn–58Bi/Ni–P systems, which can be attributed to the radial growth kinetics of the Ni3Sn4 scallops and grain boundary diffusion due to the existence of molten channels between the previously formed Ni3Sn4 scallops. Evidence is presented suggesting that highly scattered pores within the Ni3P layer play an important role in the seemingly random fluctuations of the Ni3Sn4 thickness in the Sn–58Bi/Ni–P system with respect to reaction temperature and time. By contrast, the thickness of the Ni3Sn4 layer in the Sn–58Bi/Ni system increased with increasing reaction temperature and time. Addition of 1 wt.% Cu into the basic Sn–58Bi solder led to the formation of (Cu,Ni)6Sn5, instead of Ni3Sn4, and hence significantly reduced the consumption rates of both the Ni and Ni–P layers during high-temperature storage. Pure electroplated Ni will not survive appreciably longer than electroless Ni–P when in contact with either molten Sn–58Bi or Sn–Bi–Cu.  相似文献   

19.
The effect of adding a small amount of rare earth cerium (Ce) element to low Ag containing Sn-1wt%Ag Pb-free solder on its interfacial reactions with Cu substrate was investigated. The growth of intermetallic compounds (IMCs) between three Sn-1Ag-xCe solders with different Ce contents and a Cu substrate was studied and the results were compared to those obtained for the Ce-free Sn-1Ag/Cu systems. In the solid-state reactions of the Sn-1Ag(-xCe)/Cu solder joints, the two IMC layers, Cu6Sn5 and Cu3Sn, grew as aging time increased. Compared to the Sn-1Ag/Cu joint, the growth of the Cu6Sn5 and Cu3Sn layers was depressed for the Ce-containing Sn-1Ag-xCe/Cu joint. The addition of Ce to the Sn-Ag solder reduced the growth of the interfacial Cu-Sn IMCs and prevented the IMCs from spalling from the interface. The evenly-distributed Ce elements in the solder region blocked the diffusion of Sn atoms to the interface and retarded the growth of the interfacial IMC layer.  相似文献   

20.
This study examined the interfacial reaction between electroless plated Ni−P/Au under bump metallization (UBM) and a eutectic Sn−3.5Ag solder using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The chemical and crystallographic analysis using TEM provided important information on the microstructural evolution at the interface. In this study, UBM was prepared by the electroless plating of Au (0.15 μm)/Ni-15 at %P (5 μm) on a bare Cu substrate and was then reacted with a Sn−3.5Ag eutectic solder at 260°C for various amounts of time to examine the different sequential stages of the interfacial reaction TEM analyses confirmed that beside the Ni3Sn4 layer, there were three more IMC layers at the interface: the Ni−Sn−P ternary layer, Ni3P layer, and the layer of phase mixture of the Ni3P and Ni2SnP ternary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号