共查询到20条相似文献,搜索用时 0 毫秒
1.
Al2O3–LaAl11O18–ZrO2 composites were prepared by in situ sintering reaction of different proportions of Al2O3 and La2Zr2O7. The studied batches were uniaxially pressed and pressureless sintered at 1600 °C up to 1725 °C for 1 h. Phase composition study reveals that the only present phases are alumina, lanthanum hexaluminates and zirconia. No other intermediate phases are present. Rodlike LaAl11O18 was observed in the sintered bodies containing more than 25 wt.% LaAl11O18. The effect of rodlike particles on the densification and mechanical behavior was discussed. It was found that increasing the LaAl11O18 content more than 25 wt.% enhances the fracture toughness, but reduces both the bending strength and the hardness of the sintered composites. 相似文献
2.
Al2O3–10TiC composite was synthesized by high energy ball milling followed by spark plasma sintering (SPS) process. Microstructure of the sintered composite samples reveals homogeneous distribution of the TiC particles in Al2O3 matrix. Effect of sintering temperature on the microstructure and mechanical properties was studied. The sample sintered at 1500 °C shows a measured density of 99.97% of their theoretical density and hardness of 1892 Hv with very high scratch resistance. These results demonstrate that powder metallurgy combined with spark plasma sintering is a suitable method for the production of Al2O3–10TiC composites. 相似文献
3.
Fundamental aspects of reaction behavior and formation path in the Cr2O3–B2O3–Mg–C quaternary system have been studied to synthesize chromium boride–chromium carbide nanocomposite. In order to find the influence of simultaneous presence of magnesium and carbon on final products, various powder mixtures were chosen according to following reaction: B2O3 + Cr2O3 + (9 − x) Mg + x C. The value of x varied from 0 to 4. In the absence of carbon (x = 0), CrB2 was synthesize through mechanically induced self-propagating reaction (MSR). In the presence of 8 mol Mg and 1 mol C (x = 1), the dominant boride phase was CrB while no chromium carbide was detected. By increasing C content (x = 2), the magnesiothermic reduction occurred in MSR mode; whereas, the synthesis of Cr3C2 initiated after combustion reaction and completed gradually during milling for 6 h. Further increase in C amount (x = 3) resulted in formation of Mg3(BO3)2 as unwanted phases as well as CrB and Cr3C2. In the presence of 6 mol Mg and 4 mol (x = 4), no mechanical reaction was observed even after 8 h of milling. Optimum value of x for the formation of CrB–Cr3C2 nanocomposite was 2. Based on the morphological evolutions, it is evident that the mechanosynthesized powder is made up of nanometric particles. 相似文献
4.
5.
The effect of Al2O3 content on ignition temperature and combustion temperature, the phase composition, the density of the products and the grain size of TiC was investigated by self-propagating high-temperature synthesis reaction of Al2O3–Ti–C system. The results show ignition temperature increases and combustion temperature decreases with the increasing of Al2O3 content; the density of the products varies with Al2O3 content, TiC and Al2O3 are the two stable phases after SHS, TiC particle size decreases with the increasing of Al2O3 content, furthermore, the fracture type of the sintered specimens is a nearly completely intergranular mode. 相似文献
6.
A SiO2–Al2O3–glass composite coating was prepared on Ti–6Al–4V alloy by air spraying and subsequent firing. The oxidation behavior of the specimens at 800 °C and 900 °C for 100 h was studied. The thermal shock resistance of the coating was tested by heating up to 900 °C and then quenching in water. The composite coating acted as an oxygen migration barrier and exhibited good resistance against high temperature oxidation, thermal shock, and oxygen permeation on the Ti–6Al–4V alloy. Coating/alloy interfacial reaction occurred, forming a Ti5Si3/Ti3Al bilayer structure. A thin Al2O3 rich layer formed beneath the composite coating during oxidation at 900 °C. 相似文献
7.
《Acta Materialia》2002,50(6):1441-1451
BaO considerably affects the composition and the microstructure of the reaction zone formed between BaO-doped aluminosilicate ceramics and molten aluminium alloys under vacuum. The reduced Ba and Si form AlBaSi precipitates, found adhered to the interface and dispersed in the metal Al-matrix, whose formation apparently controls the reaction kinetics. 相似文献
8.
《Intermetallics》2014
Phase equilibria in the Ir–W, Ir–Al and Ir–W–Al systems at temperatures between 1100 °C and 1600 °C were experimentally investigated using diffusion couples and two- or three-phase alloys, and the mechanical properties of γ′ (L12) strengthened Ir–W–Al alloys were examined by hardness and compression tests at room and elevated temperatures. The phase boundaries between the γ(A1)/ε′(D019), ε′/ε(A3) and ε/ε″(B19) in the Ir–W system at 1400 °C–1600 °C and those between the γ/β(B2) and β/Al2.7Ir in the Ir–Al system at 1100 °C–1400 °C were determined. The phase diagrams in the Ir-rich corner of the Ir–W–Al ternary system at 1300 °C and 1400 °C were also determined. The existence of the γ′ phase of the Ir3(W,Al) ternary compound was confirmed, and this system was found to consist of the γ, γ′, ε, ε′ and β phases in the Ir-rich portion. It was also found from hardness and compression tests up to 1200 °C that Ir–Al–W alloys having the γ + γ′ structure with a small lattice misfit show high hardness and strength at room and high temperatures. 相似文献
9.
The isothermal sections of Al–Fe–Sn ternary system at 973 and 593 K were determined experimentally by the equilibriated alloy method using scanning electron microscopy coupled with energy-dispersive spectrometry and X-ray diffractometry. Experimental results show that no ternary compound is found on these two sections. The maximum solubility of Fe in the liquid phase is 1.6% (mole fraction) at 973 K and those of Fe and Al in the liquid phase are 0.6% and 5.1% (mole fraction) at 593 K, respectively. The maximum solubility of Sn in the Fe–Al compounds is 4.2% (mole fraction) at 973 K and 2.3% (mole fraction) at 593 K. All the Fe–Al compounds can be in equilibrium with the liquid phase. 相似文献
10.
The effect of aluminum content on the mechanochemical behavior of ternary system Al–B2O3–C to fabricate Al2O3/B4C composite was investigated. A mixture of boron oxide powders along with different amounts of aluminum and graphite was activated in a ball mill. The value of Al content varied from 2 mol to 7 mol compared to the stoichiometric mole ratios (4 mol). Thermodynamics evaluation indicates that the value of Al content in the mixture plays a key role and overall reaction enthalpy and adiabatic temperature altered by variation of aluminum and carbon content. Experimental findings revealed that at low aluminum content (2 mol Al), aluminothermic reaction proceeded in gradual mode and no carbothermal reduction took place. Increase in Al content up to 3 mol led to a change in the mode of aluminothermic reaction to MSR (mechanically induced self-propagating reaction) and gradual occurrence of carbothermic reaction. By increasing the amount of Al (10/3–4 mol Al), aluminothermic reaction provided sufficient heat for activating endothermic carbothermic reduction; hence, both reducing reactions happened simultaneously. Further increase in Al content (7 mol Al) led to gradual aluminothermic reaction and excess Al acted as inert matrix. 相似文献
11.
P.C. Kang Z.W. Cao G.H. Wu J.H. Zhang D.J. Wei L.T. Lin 《International Journal of Refractory Metals and Hard Materials》2010
A series of boron carbide (B4C) matrix composites with different contents of Al, were synthesized by reaction hot-press sintering with milled B4C and pure metallic Al powder at 1600 °C for 1 h. X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to identify the phase constituent of the milled powders and the composites. The results have shown that parts of B4C and Al particles were oxidized to boron oxide (B2O3) and alumina (Al2O3) during the milling. Thermit reaction occurred and B2O3 was reverted during hot-press sintering. A ternary phase of Al boron carbide (Al8B4C7) was found in the composites, and the B4C transformed to a rich boron phase (B6.5C) because of the superfluous boron in the system. 相似文献
12.
NiAl–10 vol.% Al2O3 in situ nanocomposite has been synthesized by reactive milling and subsequent spark plasma sintering. The synthesized nanocomposites have ~96% of theoretical density after sintering at 1000 °C for 5 min. Microstructural analysis of consolidated samples using TEM has revealed the presence of α-Al2O3 particles of 10–12 nm size in NiAl matrix of submicron grain size. Consolidated NiAl–10 vol.% Al2O3 nanocomposite has shown very high hardness of 772 HV0.3 and compressive strength of 2456 MPa with ~14% plastic strain. The high hardness and compressive yield strength are attributed to the presence of nanocrystalline α-Al2O3 particles and the appreciable plastic strain is attributed to the submicron grains of NiAl. 相似文献
13.
《Intermetallics》2017
Mo5Si3 and Mo5Si3–Mo3Si–Al2O3 composite were synthesized use MoO3, Mo, Si and Al as raw materials by mechanically induced self propagating reaction and then consolidated by hot-pressing. The microstructure of the materials was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with X-ray energy dispersive spectroscopy (EDS). The effects of the Al2O3 on the mechanical and tribological properties of Mo5Si3–Mo3Si–Al2O3 composite have been studied. It was found that benefits associated with the addition of the Al2O3 to Mo5Si3 and Mo3Si include finer microstructure, higher strength, higher fracture toughness and higher hardness. The dry sliding wear properties of the composite were investigated using against GCr15 bearing steel in ball-on-disk system at room temperature. The results indicated that the friction coefficients and specific wear rates of Mo5Si3–Mo3Si–Al2O3 composite were significantly reduced by the addition of Al2O3, and its specific wear rates decreased by an order of magnitude compare with the monophase Mo5Si3. The friction coefficients of test materials decrease with an increasing load. The dominant wear mechanism of the composites was interpreted by several different wear models involving plastic deformation, adhesion, brittle fracture and reaction to form a tribo-oxidation layer. 相似文献
14.
The short-term rapid sintering of nanostructured WC and WC–Al2O3 hard materials was fabricated using the high-frequency induction-heating sintering (HFIHS) process. The sintering behaviors, microstructure, and mechanical properties of the WC and WC–Al2O3 composites were investigated. The addition of Al2O3 to WC can facilitate sintering, and the grain size of WC decreases as the addition of Al2O3 is increased; furthermore, the hardness and fracture toughness of WC-15 vol% Al2O3 are greater than those of monolithic WC and Al2O3. 相似文献
15.
Phase composition and microstructures of grain boundary of oversintered yttrium aluminum garnet (Y3Al5O12, YAG) ceramics by vacuum sintering at 1 850 ℃ were investigated. For synthesizing YAG, grain boundary is a key factor for YAG ceramics. The morphology of grain boundary was observed by SEM, TEM and its composition was analyzed by EDS. It is identified that the grain boundary is composed of a-AI2O3 and yttrium aluminum perovskite (YAP, YAlO3) eutectics. At the edge of YAG crystal grain, YAG phase is decomposed into perovskite YAP and α-Al2O3 during high temperature sintering. Due to refractive indexes of YAP and α-Al2O3 phases in wide grain boundary are different from those of YAG, the transmittance of oversintered YAG ceramics is lower than that of YAG ceramics sintered at 1 750 ℃. 相似文献
16.
A. Balakrishnan B.B. Panigrahi K.P. Sanosh Min-Cheol Chu T.N. Kim Seong-Jai Cho 《Journal of Materials Processing Technology》2009,209(12-13):5271-5275
This work attempts to improve the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating a glass (magnesium aluminum silicate glass) of lower thermal expansion on the surface at high temperature. The glass improved the strength of the composite at room temperature as well as at higher temperatures. There was a significant improvement in the Weibull modulus after the glass infiltration. Glass-infiltrated samples showed better thermal shock resistance. The magnitude of strength increment was found to be in the order of the surface residual stress generated by thermo-elastic properties mismatch between the composite and the infiltrated glass. 相似文献
17.
A research on fabrication of finegrained Al2O3 ceramic at lower sintering temperature was carried out.Al2O3 powder with 50 nm in diameter is compounded with 11.24%Al and 4.75% Fe(mass fraction) by high-energy ball-milling. AI is got from Al powder which is a component of the materials being milled and Fe from steel milling balls and milling jar during the milling. In this way, nearly no impurity is brought into the composite powder during milling. With hot pressing of the composite powder and pure Al2O3 powder, it is proved that Al2O3 powder can be densified at lower sintering temperature when the powder is compounded in this way. Al2OC and AlFe form during sintering process of the composite powder. With the reactive sintering and multiphase sintering mechanisms, finegrained Al2O3 ceramic is fabricated at low sintering temperature. 相似文献
18.
《Acta Materialia》2000,48(12):3103-3112
Nanocrystalline α-alumina powders with a primary mean particle diameter of 10 nm were synthesized from aluminum nitrate and ammonia solution using a precipitation method. The presence of ammonium nitrate (a by-product of the precipitation reaction) in the Al(OH)3 dry gel can reduce the formation temperatures of γ-, δ-, θ-, and α-Al2O3 during heating. The combined effect of 5 wt% α-alumina seed crystals, 100 nm in diameter, and 44% ammonium nitrate can reduce the θ-Al2O3→α-Al2O3 transformation temperature from 1200 to 900°C. The α-Al2O3 powder milled in anhydrous alcohol has an agglomeration strength of 76 MPa (soft agglomerated), while the one milled in deionized water has an agglomeration strength of 234 MPa (hard agglomerated). For both the soft and the hard agglomerated powders initial stage sintering is controlled by grain boundary diffusion, with activation energies of 365 and 492 kJ/mol, respectively. The alumina ceramic produced by sintering the soft agglomerated powder at 1400°C for 2 h has a mean grain size of 0.93 μm, a mean flexural strength of 700 MPa, and a fracture toughness of 4.75 MPa m1/2. 相似文献
19.
The NiCrBSi–Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi–Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi–0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6–10 N, the NiCrBSi–0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear. 相似文献
20.
《International Journal of Refractory Metals and Hard Materials》2012,30(6):692-697
The oxidation behavior of hot-pressed Al2O3–TiC–Co composites prepared from cobalt-coated powders has been studied in air in the temperature range from 200 °C to 1000 °C for 25 h. The oxidation resistance of Al2O3–TiC–Co composites increases with the increase of sintering temperature at 800 °C and 1000 °C. The oxidation surfaces were studied by XRD and SEM. The oxidation kinetics of Al2O3–TiC–Co composites follows a rate that is faster than the parabolic-rate law at 800 °C and 1000 °C. The mechanism of oxidation has been analyzed using thermodynamic and kinetic considerations. 相似文献