首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2001,49(1):41-51
Nuclear magnetic resonance (NMR) spectroscopy of 27Al was used to study the development of precipitation in aged Mg–6 wt%Al, Mg–9 wt%Al and Mg–9 wt%Al–(x) wt%Zn alloys. The 27Al spectra for the aged alloys consist of two peaks; one from the aluminium in solid solution and the other from aluminium in the precipitate phase. The proportion of aluminium atoms in the matrix and precipitate phases was measured, as a function of time at temperature, using the relative intensities of peaks. The nucleation of the continuous precipitates was found to be highly dependent on the initial supersaturation and it is proposed that it is a homogeneous process. The Austin–Rickett relation successfully models the amount of continuous precipitation with aging time; the kinetics is consistent with one-dimensional and interface-controlled growth. Changes in composition of the matrix and precipitate phases were correlated with the 27Al Knight shift characterising these phases. The Knight shift data from a series of ternary Mg–9 wt%Al–(x)wt%Zn alloys indicates that the Zn segregates to the precipitate phase during precipitation.  相似文献   

2.
《Acta Materialia》1999,47(2):489-500
Microstructure and microsegregation in two directionally solidified Al alloys, Al–3.9Cu–0.9Mg and Al–15Cu–1Mg (in wt%), were investigated for cooling rates between 0.78 and 0.039 K/s. Transverse and longitudinal sections were examined to exhibit dendritic microstructures. Fractions of solids formed were determined using quantitative image analysis and solute redistribution in the primary phase was determined using area scans. The model employed to calculate microsegregation is based on the Scheil model but including solid-state diffusion, dendrite arm coarsening and undercooling of the dendrite tip and the formation of eutectic. The model-calculated results were found to be in good agreement with the experimentally determined concentration distributions in the primary α phase and the amounts of phases formed. It was found that the dendrite morphology was best described by a cylindrical arm geometry and that the accuracy of the phase diagram could have a significant influence on the microsegregation predictions. For the alloy with low copper content, two types of embedded droplets were observed.  相似文献   

3.
Generally, the good combination of pre-deformation and aging can improve the mechanical strength of the Al–Cu–Li–Mg alloys. However, the effects of pre-deformation on competitive precipitation relationship and precipitation strengthening have not been clarified in detail in Al–Cu–Li–Mg alloys with high Mg. In the present study, the effects of pre-deformation level on the microstructure and mechanical properties of an Al–2.95 Cu–1.55 Li–0.57 Mg–0.18 Zr alloy have been investigated. It is found that the introduction of dislocation by 5% pre-deformation can facilitate the precipitation of new successive composite precipitates and T _1 precipitates along the sub-grain boundaries or dislocations and inhibit the precipitation of dispersive GPB zones which is the main precipitates of the alloys without pre-deformation. The introduction of 5% pre-deformation can enhance the mechanical properties considerably. When the pre-deformation level increases from 5 to 15%, the number density of the successive composite precipitates and T _1 precipitates increases, and the aspect ratio of T _1 precipitates decreases. The decrease in T _1 precipitate aspect ratio and the increment of the successive composite precipitates result in the reduction in precipitation strengthening. Therefore, the increase in pre-deformation level from 5 to 15% does not further improve the mechanical properties of the alloys, although the dislocation strengthening increases continuously.  相似文献   

4.
Abstract

The quench sensitivity of Al–Si–Mg (D357 unmodified and Sr modified), and Al–Si–Mg–-Cu (354 and 319 Sr modified) cast alloys was investigated using a fluidised bed (FB). The average cooling rate of castings in the fluidised bed is lower than those quenched in water; the cooling rate first increases to a certain maximum and then decreases during quenching. The change in the cooling rate during quenching in water was more drastic, where the cooling rate varied from 0 to ?80 K s?1 in less than 8 s, as compared with those quenched in FB, where the cooling rate varied from 0 to ?14 K s?1 in 18 s. The FB quenching resulted in the formation of several metastable phases in Al–Si–Mg–Cu alloys; in contrast, no such transformation was observed during water quenching. The T4 yield strength of the FB quenched alloys was greater than water quenched alloys owing to the formation of a greater volume fraction of metastable phases in the FB quenched alloys. The tensile properties of T6 treated alloys show that Al–Si–Mg alloys (both unmodified and Sr modified) are more quench sensitive than Al–Si–Mg–Cu alloys. The high quench sensitivity of the Al–Si–Mg alloys is because GP zones are not formed, whereas GP zones are formed during quenching of the Al–Si–Mg–Cu alloys as predicted by time temperature transformation and continuous cooling transformation) diagrams.  相似文献   

5.
《Acta Materialia》1999,47(5):1537-1548
The solute clusters and the metastable precipitates in aged Al–Mg–Si alloys have been characterized by a three-dimensional atom probe (3DAP) and transmission electron microscopy (TEM). After long-term natural aging, Mg–Si co-clusters have been detected in addition to separate Si and Mg atom clusters. The particle density of β″ after 10 h artificial aging at 175°C varies depending on pre-aging conditions, i.e. pre-aging at 70°C increases the number density of the β″ precipitates, whereas natural aging reduces it. This suggests that the spherical GP zones formed at 70°C serve as nucleation sites for the β″ in the subsequent artificial aging, whereas co-clusters formed at room temperature do not. Atom probe analysis results have revealed that the Mg:Si ratios of the GP zones and the β″ precipitates in the alloy with excess amount of Si are 1:1, whereas those in the Al–Mg2Si quasi-binary alloy are 2:1. Based on these results, the characteristic two-step age-hardening behavior in Al–Mg–Si alloys is discussed.  相似文献   

6.
Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)_2 eutectic phases, and fine intermetallic compounds g(MgZn_2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)_2, intermetallic g(MgZn_2), and h(Al_2Cu). During homogenization at 450 °C, fine g(MgZn_2) can dissolve into matrix absolutely. After homogenization at 450 °C for 24 h, Mg(Cu, Zn, Al)_2 phase in 7136 alloy transforms into S(Al_2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys.  相似文献   

7.
Al–3Cu–Mg alloy was fabricated by the powder metallurgy (P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents (0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope (OM) and scanning electron microscope (SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength (TRS) of sintered materials decreased with greater Mg content (Al–3Cu–2.5Mg). However, Al–3Cu–0.5Mg alloy exhibited moderate TRS but higher specific strength than Al–3Cu without Mg addition.  相似文献   

8.
The effect of the atmosphere on the oxidation rates of aluminum-can alloyswas studied using thermogravimetric methods. The atmospheres included: air,Ar+1%O2, Ar+5%O2, and CO2. Temperaturesranged from 450 to 800°C. The oxidation rate was influenced by thesurface condition and by the time elapsed after specimen preparation. Increasingtemperature increased the oxidation rate of both AA 3004 and 5182. Parabolickinetics were observed for AA 3004 and linear kinetics were observed forAA 5182 at 450 and 500°C. From 550 to 800°C, parabolic behavior wasobserved for AA 5182. The reduction of free oxygen in the atmosphere reducedthe rate of oxidation. The reactivity of the atmospheres decreased in thefollowing sequence: air, Ar+5%O2, Ar+1%O2, and CO2.  相似文献   

9.
In this study, fatigue properties and fracture mechanism of dissimilar Al–Mg–Si/Al–Zn–Mg aluminum alloys friction stir welding(FSW) joints were investigated and the effect of the sheet configuration on the fatigue behavior of the FSW joints was also discussed. Results showed that the joints owned better fatigue properties when the Al–Zn–Mg aluminum alloy was placed at the advancing side(AS). At 10~7 cycles, the fatigue strengths of Al–Zn–Mg–AS and Al–Mg–Si–AS joints were, respectively, 105.6 and 90.1 MPa. All joints fractured at the heat-affected zone at the Al–Mg–Si alloy side. Transmission electron microscopy results showed that better fatigue property of the Al–Zn–Mg–AS joint was associated with the bridging effect of the bigger secondary phase particles.  相似文献   

10.
《Acta Materialia》2001,49(17):3443-3451
The structure of GP-zones in an industrial, 7xxx-series Al–Zn–Mg alloy has been investigated by transmission electron microscopy methods: selected area diffraction, conventional and high-resolution imaging. Two types of GP-zones, GP(I) and (II) are characterized by their electron diffraction patterns. GP(I)-zones are formed over a wide temperature range, from room temperature to 140–150°C, independently of quenching temperature. The GP(I)-zones are coherent with the aluminum matrix, with internal ordering of Zn and Al/Mg on the matrix lattice, suggested to be based on AuCu(I)-type sub-unit, and anti-phase boundaries. GP(II) are formed after quenching from temperatures above 450°C, by aging at temperatures above 70°C. The GP(II)-zones are described as zinc-rich layers on {111}-planes, with internal order in the form of elongated <110> domains. The structural relation to the η′-precipitate is discussed.  相似文献   

11.
Abstract

In this study, the microstructure and mechanical properties of as cast Mg–x Sn–5Al–1Zn alloys were investigated. The microstructures of the alloys were characterised by the presence of Mg2Sn and Mg17Al12 precipitates. The greatest tensile strength and elongation were obtained at the alloy containing 5 wt-%Sn at room temperature. Microhardness of the alloys and volume fraction of the Mg2Sn precipitates increased with increasing Sn content. Fractographic analysis demonstrated that dimple and cleavage facet were dominant mechanisms of these alloys tested at room and elevated temperature. The portion of cleavage facet was increased with the increment of Sn at the room and elevated temperatures.  相似文献   

12.
The microstructures and corrosion behaviors of the Al–6.5Si–0.45Mg casting alloys with the addition of Sc were investigated by using scanning electron microscopy, X-ray diffraction, electrochemical measurement techniques and immersion corrosion tests and compared with those of Sr-modified alloy. The results show that Sc has evident refining and modifying effects on the primary α(Al) and the eutectic Si phase of the alloy, and the effects can be enhanced with the increase of Sc content. When the Sc content is increased to 0.58 wt.%, its modifying effect on the eutectic Si is almost same as that of Sr. Sc can improve the corrosion resistance of the test alloy in NaCl solution when compared with Sr, but the excessively high Sc content cannot further increase the corrosion resistance of the alloy. The corrosion of the alloys mainly occurs in the eutectic region of the alloy, and mostly the eutectic α(Al) is dissolved. This confirms that Si phase is more noble than α(Al) phase, and the galvanic couplings can be formed between the eutectic Si and α(Al) phases.  相似文献   

13.
An ultrafine-grained Al–Zn–Mg–Zr alloy with superior mechanical performance was obtained by high passes of equal angular pressing (ECAP) and subsequent aging. After 8 ECAP passes and aging, the yield strength (YS) and ultimate tensile strength (UTS) of the solid-solutioned alloy are significantly improved from (98±10) and (226±7) MPa to (405±9) and (427±9) MPa, respectively. A large elongation is also maintained ((17.4±2.5)%). The microstructure features including grain refinement, morphology of precipitates, and dislocation density, were revealed with multiscale characterizations, including transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. After 8 passes of ECAP, the original coarse elongated grains are refined to a unique bimodal grain structure consisting of ultrafine equiaxed and lath-like grains. Additionally, the effects of ECAP and subsequent aging on the strengthening contribution of a variety of strengthening mechanisms, such as dislocation strengthening and precipitation strengthening, were discussed in detail.  相似文献   

14.
《Acta Materialia》2002,50(3):511-523
Knowledge of the exact physical mechanism of cavity formation and early growth is important for the prediction of the extent of internal damage following superplastic deformation. To this end, the early stages of cavitation in a superplastic Al–Mg–Mn–Cu alloy have been experimentally studied and reported here. Small cavities (<0.5 μm) were detected by scanning electron microscopy and the number of cavities per unit volume was monitored by image analysis through optical microscopy. Before deformation, some cavities were seen at the particle–matrix interfaces. However, during tensile deformation in the temperature range of 450–550°C (and strain rates ∼10−4 to 10−2 s−1), additional cavities emerge and grow. Most cavities are observed at the interface between particles and the matrix from submicrometer size range, and grow initially along the interface. This suggests that early cavity growth is by matrix/particle decohesion, possibly starting from interfacial defects, and this growth has rapid kinetics. The density of observable cavities increases with strain, i.e. “nucleation” is continuous. The number of cavities increases at higher strain rates and at lower test temperatures. This is due to the higher flow stresses, reduced strain-rate sensitivity and poorer diffusional accommodation process, which assist in the initial growth of the submicrometer and nanoscale interface defects. But the evidence for diffusional cavity growth in the initial stages was not found.  相似文献   

15.
To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250–400 r/min; a gas flow of 1.2–2.0 L/s, a refining time of 10–15 min. This optimized process can reduce the gas content in the solid alloy to 2×10?3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al–5Ti–1B wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al–5Ti–1B wire compared with the alloys refined with other refiners.  相似文献   

16.
17.
18.
The behavior of aluminum alloy AA2139 subjected to T6 treatment, including solution treatment and artificial aging, has been studied using cyclic loading with a constant total strain amplitude. Upon low-cyclic fatigue in the range of total strain amplitudes εac of 0.4–1.0%, the cyclic behavior of the AA2139-T6 alloy is determined by the processes that occur under the conditions of predominance of the elastic deformation over plastic deformation. The AA2139 alloy exhibits stability to cyclic loading without significant softening. The stress-strained state of the alloy upon cyclic loading can be described by the Hollomon equation with the cyclic strength coefficient K' and the cyclic strain-hardening exponent n' equal to 641 MPa and 0.066, respectively. The dependence of the number of cycles to fracture on the loading amplitude and its components (amplitudes of the plastic and elastic deformation) is described by a Basquin–Manson–Coffin equation with the parameters σ′/E = 0.014, b =–0.123, ε′f= 178.65, and c =–1.677.  相似文献   

19.
Abstract

This study was carried out on 319 alloys containing low and high levels of Mg, in the non-modified and Sr modified conditions (150 ppm Sr addition). Single step, two step and triple step heat treatments were applied to identify the optimum solution heat treatment to minimise incipient melting of the copper phases Al2Cu and Al5Mg8Cu2Si6 in these alloys in relation to the alloy properties. In Mg free alloys, no incipient melting of Al2 Cu was observed even in samples heat treated at 520°C. Addition of Sr leads to modification of Si particles but also to an increase in area per cent porosity and pore length, especially when the solution temperature reaches 520°C. Addition of Mg results in a decrease in the Si particle aspect ratio but an increase in particle size. Magnesium was also found to increase the possibility of incipient melting resulting from the formation of the insoluble Al5Mg8Cu2Si6 phase. To some degree, Sr decreases the effect that Mg has in increasing the area per cent porosity and pore length, while Mg impairs the effects that Sr has on modifying Si particles, even though the lowest Al–Si eutectic temperature is obtained for the 319 alloy containing both Mg and Sr.  相似文献   

20.
The structure and phase composition of Al–Ca–Mg–Sc alloys containing 0.3 wt % Sc, up to 10 wt % Ca, and up to 10 wt % Mg have been investigated in the cast state and state after heat treatment. It has been shown that only binary phases Al4Ca, Al3Sc, and Al3Mg2 can be in equilibrium with the aluminum solid solution. It has been found that the maximum strengthening effect caused by the precipitation of Al3Sc nanoparticles for all investigated alloys is attained after annealing at 300–350°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号