共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Thermal Engineering》2000,20(1):81-101
A bi-dimensional modelling investigation of the flow in the last stage of a 110 MW geothermal turbine has been conducted. The study was based upon a Renormalization Group Theory turbulence model. The results confirmed the existence of flow conditions which may play a main role in the erosion of the L-0 stage blade tenon, which had been detected in periodic overhauls. According to predicted results the relationship between erosion and flow patterns might exist due to: (1) a vapour jet hitting directly on tenon surface at velocities around 65 m/s; (2) a low-pressure region identified with recirculating flow, which may be causing cavitation on the damaged surface. Afterwards, the flow was simulated with changes on the geometry and grid. These changes are, indeed, practically feasible of being implemented. The simulations showed that it is possible to reduce the erosion process by enlarging a flat region close to the L-0 rotor stage. Namely, this change of geometry produces a flow pattern that diminishes the strength of recirculation flow making it possible to reduce both the flow rate through tenon region and its velocity on tenon surface. The pressure drop diminishes as well, clearly reducing a risk of cavitation. 相似文献
2.
Excessive erosion of the labyrinth seal of a 110 MW geothermal turbine has been investigated. This study used computational fluid dynamics (CFD) and aims to identify one cause of erosion and a possible solution for substantially reducing it. The predictions were based upon a numerical calculation using a CFD model of the labyrinth seal with a water/steam flow containing hard solid particles and solved with a commercial CFD code: Fluent V5.0. The results confirmed the existence of flow conditions that play a major role in the rotor labyrinth seal erosion. Afterwards, the flow path was simulated with changes of rotor labyrinth seal geometry, which are indeed feasible of being implemented. The results confirmed that it is possible to reduce the erosion process by approximately 80% by incorporating a steam flow deflector in the fourth stage diaphragm, which changes the steam flow direction in the inlet zone to the rotor labyrinth seal channel, resulting in a reduction in steam volumetric mass flow and hard particle velocity by about 44%. 相似文献
3.
4.
The influence of coning a wind turbine rotor is analysed numerically using the blade element momentum (BEM) method and an actuator disc model combined with the Navier–Stokes equations. The two models are compared and shortcomings of the BEM model are discussed. As a first case, an actuator disc with a constant normal loading of CT = 0·89 is considered. In accordance with theoretical predictions and investigations by Madsen and Rasmussen (European Wind Energy Conference, Nice, 1999; 138–141), the computations demonstrate that the power coefficient based on the projected area of the actuator disc is invariant to coning. The induced velocities, however, are no longer constant, but vary as a function of spanwise position. Next, the flow past the 2 MW Tjæreborg wind turbine is computed with and without coning. The most important findings from this study are that, although the power is reduced when the rotor is coned, the power coefficient based on the projected area is only slightly changed. The computations show that upstream coning results in a 2%–3% point higher power production than the corresponding downstream coning of the rotor. The Navier–Stokes computations show that the integrated loading, i.e. the root shear force, is higher than the one predicted by the BEM method, which is reduced approximately in proportion to the projected area. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
5.
Verification of computational simulations of the NREL 5 MW rotor with a focus on inboard flow separation 总被引:1,自引:0,他引:1
The aerodynamic characteristics of the NREL 5 MW rotor have been examined using a Reynolds‐averaged Navier–Stokes method, OVERFLOW2. A comprehensive off‐body grid independence study has been performed. A strong dependence on the size of the near‐body wake grid has been found. Rapid diffusion of the wake appears to generate an overprediction of power and thrust. A large, continuous near‐wake grid at a minimum of two rotor diameters downstream of the rotor appears to be necessary for accurate predictions of near‐body forces. The NREL 5 MW rotor demonstrates significant inboard flow separation up to 30% of span. This separation appears to be highly three dimensional, with a significant amount of radial flow increasing the size of the separated region outboard. A simple, continuous full‐chord fence was applied at the maximum chord location of the blade, within the region of separation. This non‐optimized device reduced the boundary‐layer cross‐flow and resulting separation. The fence increased energy capture by nearly 1% at a wind speed of 8 m s?1 and slightly increased blade loading over the length of the span. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
采用ANSYS软件有限元分析方法计算180MW空冷汽轮发电机转子风扇座的应力,并应用Neuber方法计算转子风扇座的低周疲劳寿命。采用ANSYS计算汽轮发电机转子风扇座的应力,克服了经典计算方法对复杂变化曲面应力计算的局限性,是较理想地模拟转子风扇座实际运行工况的计算方法。 相似文献
7.
To alleviate the mass‐scaling issues associated with conventional upwind rotors of extreme‐scale wind turbines (≥10 MW), a morphing downwind‐aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub‐joints that can be unlocked to allow for moment‐free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near‐hub joint for coning angle: 22° at rated conditions. The conventional baseline was set as the 13.2‐MW Sandia 100‐m all glass blade in a three‐bladed upwind configuration. To quantify potential mass savings, a downwind load‐aligning, two‐bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi‐steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off‐design conditions, along with system‐level Levelized Cost of Energy analysis. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Excessive erosion of the low-pressure rotor end gland seal of a 25 MWe geothermal turbine produced a partial loss of turbine vacuum that degraded cycle efficiency. This study used computational fluid dynamics (CFD) to identify the causes of erosion and the optimal steam seal system flow conditions for reducing the erosion problem. The predictions were based upon a numerical calculation using a commercial CFD code (Adapco Star-CD) to model the rotor end gland seal with a steam flow containing hard solid particles. The results confirmed that flow conditions play a major role in rotor gland seal erosion. By changing steam seal flow pressures to vary flow, it was confirmed that there is a threshold seal flow condition below which erosion does not occur, or is minimized. Optimizing the rotor end gland seal supply pressure and intercondenser pressure reduced the turbulent flow kinetic energy by 49%, with a corresponding decrease in the erosion rate of the rotor gland seal surface. The erosion rate is related directly to the particle velocity and turbulent flow kinetic energy. Recommendations are provided for adjusting the rotor end gland seal system to avoid erosion. 相似文献
9.
Dissolved chemicals contained in geothermal steam can lead to corrosion, erosion and deposition of scale on turbine blades, reducing their useful life. In addition, deposits on the blading system reduce the flow area of the turbine. The first-stage nozzle group is typically most affected by deposition of scale although scale may be present in other parts of the system. The most common deposits are of silica and calcium carbonate. This decreases the output capacity and efficiency of the turbine. This paper presents the results of simulations on the effect of scale deposition in the first-stage nozzle group on the steam pressure before and after the first stage, output capacity and efficiency of the turbine. By measuring the steam pressure before and after the first stage the change in the flow area can be estimated. A method of monitoring the percentage of nozzle plugging in real time is proposed. The method can be applied to any turbine that is susceptible to scale deposition. 相似文献
10.
Clemens Jauch 《风能》2015,18(9):1645-1656
In this paper, a flywheel energy storage that is an integral part of a wind turbine rotor is proposed. The rotor blades of a wind turbine are equipped with internal weights, which increase the inertia of the rotor. The inertia of this flywheel can be controlled by varying the position of the weights, i.e. by positioning them closer to the center of rotation (closer to the hub) or closer to the tip of the blades. The simulation model used in this study is introduced briefly. The equation system of the flywheel is set up. Finally, simulations of different scenarios show the performance of this controllable flywheel. The conclusion is that the proposed system can mitigate transients in the power output of wind turbines. Hence, it can support the frequency control in a power system by contributing to the power system inertia. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd. 相似文献
11.
Sameh Shaaban 《国际能源研究杂志》2017,41(4):540-552
Wells turbines provide a practical solution for wave energy harvesting. The low aerodynamic efficiency of Wells turbines tangibly reduces their output power. Both the turbine efficiency and output power depend on the turbine solidity. The turbine solidity decreases from rotor hub to rotor tip for the commonly used rotors with constant chord‐length blades. The present work introduces a novel Wells turbine rotor geometry. This geometry was obtained by numerically optimizing the rotor's radial solidity distribution. The turbine performance with different rotor geometries was numerically simulated by solving the three‐dimensional Reynolds‐averaged Navier–Stocks equation under incompressible and steady state flow conditions. Simple and multi‐objective optimization were implemented in order to obtain the optimum rotor geometry. The present work showed that an improved turbine performance can be achieved by optimizing the turbine radial solidity distribution. Two different optimized rotor geometries were obtained and presented. The first rotor geometry improved the turbine efficiency by up to 4.7% by reducing its pressure drop. The second rotor geometries enhanced the turbine output power by up to 10.8%. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
The design of a three‐bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off‐design, issues are not considered, leading to a purely theoretical design for investigating maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free‐wake lifting line method and a full three‐dimensional Navier–Stokes solver. Excellent agreement is obtained using the three models. Global CP reaches a value of slightly above 0.51, while global thrust coefficient CT is 0.87. The local power coefficient Cp increases to slightly above the Betz limit on the inner part of the rotor; the local thrust coefficient Ct increases to a value above 1.1. This agrees well with the theory of de Vries, which states that including the effect of the low pressure behind the centre of the rotor stemming from the increased rotation, both Cp and Ct will increase towards the root. Towards the tip, both Cp and Ct decrease due to tip corrections as well as drag. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
An integrated numerical model was applied to simulate the mold filling and solidification process as well as predict the occurrence of relative casting defects for a rotor hub casting. The goal was to conduct a numerical experimentation to obtain an optimal alloy design of ductile cast iron for the rotor hub casting. A computer‐aided engineering software based on the finite element method was employed in this study. Numerical simulations were conducted for the rotor hub casting with two different types of alloy composition for ductile cast iron. The mold filling and solidification process were examined to predict the occurrence and extent of casting defects and a better alloy design was then proposed based on the simulated results to alleviate casting defects of the rotor hub casting. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
The flooding of the Lorraine coal mines (France), representing a huge reservoir of about 154 × 106 m3, began in June 2006. After attaining thermal equilibrium with the surrounding rocks, the water temperature in the deepest parts is expected to reach 55 °C, giving the opportunity for the extraction of low-enthalpy geothermal waters that may be suitable for district heating purposes. We present some numerical modelling results of the thermally driven convective flow in an open vertical shaft and in the entire mine reservoir. A dual permeability/porosity approach was used in the reservoir model, which includes open galleries and vertical shafts, coal panels backfilled with sand, and intact rock masses. Two scenarios of heat extraction with different flow regimes were investigated. A sensitivity analysis shows that the temperature decline in the production zone is highly dependent on the permeability of the surrounding porous rocks. Larger permeabilities result in higher water temperatures at the production shaft due to greater inflows of warm water from those rock masses. 相似文献
15.
Wind turbine rotor blades are commonly manufactured from composite materials by a moulding process. Typically, the wind turbine blade is produced in two halves, which are eventually adhesively joined along their edges. Investigations of operating wind turbine blades show that debonding of the trailing edge joint is a common failure type, and information on specific reasons is scarce. This paper is concerned with the estimation of the strain energy release rates (SERRs) in trailing edges of wind turbine blades in order to gain insight into the driving failure mechanisms. A method based on the virtual crack closure technique (VCCT) is proposed, which can be used to identify critical areas in the adhesive joint of a trailing edge. The paper gives an overview of methods applicable for fracture cases comprising non‐parallel crack faces in the realm of linear fracture mechanics. Furthermore, the VCCT is discussed in detail and validated against numerical analyses in 2D and 3D. Finally, the SERR of a typical blade section subjected to various loading conditions is investigated and assessed in order to identify potential design drivers for trailing edge details. Analysis of the blade section model suggests that mode III action is governing and accordingly that flapwise shear and torsion are the most important load cases.Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
Small propeller-type wind turbines have a low Reynolds number, limiting the number of usable airfoil materials. Thus, their design method is not sufficiently established, and their performance is often low. The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines. To that end, we designed two rotors: Rotor A, based on the rotor optimum design method from the blade element momentum theory, and Rotor B, in which the chord length of the tip is extended and the chord length distribution is linearized. We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis. Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A, but the maximum output coefficient increased by approximately 38.7%. Rotors A and B experienced a large-scale separation on the hub side, which extended to the mean in Rotor A. This difference in separation had an impact on the significant decrease in Rotor A’s output compared to the design value and the increase in Rotor B’s output compared to Rotor A. 相似文献
17.
This paper presents preliminary measurements of a 2-stage axial turbine with shrouded rotor cavities. The research facility and measurement techniques are reported. The flow field at both inlet and outlet was measured using 5-hole probes as well as temperature probes. The measurement results indicate that the inlet flow field is periodical in the tangential direction due to the influence of the first-stator leading-edge. The horse-shoe vortexes cause substantial flow blockage and turbulence near the endwall. Unsteady measurements of the rotor radial tip clearance show that one of the second-rotor blades has a little bigger clearance than the others. 相似文献
18.
19.
Piotr Lampart 《热科学学报(英文版)》2000,9(2):115-121
IntroductionLP turbines operate over some range of flow regimeson both sides of the nominal operating conditions. Acharacteristic feature of LP tUrbines are strong radial gradients of pressure, Mach number and flow angle, especially downstream of the stator, Where these gradientsdetechne inlet now conditions for the moving bladerow. The changing swirl velocity and swirl angle spanwise require considerable twist of the rotor blades. Forlow loads, low pressures at the inlet to the rotor at th… 相似文献
20.
Wind turbine rotor blades are sophisticated, multipart, lightweight structures whose aeroelasticity‐driven geometrical complexity and high strength‐to‐mass utilization lend themselves to the application of glass‐fibre or carbon‐fibre composite materials. Most manufacturing techniques involve separate production of the multi‐material subcomponents of which a blade is comprised and which are commonly joined through adhesives. Adhesive joints are known to represent a weak link in the structural integrity of blades, where particularly, the trailing‐edge joint is notorious for its susceptibility to damage. Empiricism tells that adhesive joints in blades often do not fulfil their expected lifetime, leading to considerable expenses because of repair or blade replacement. Owing to the complicated structural behaviour—in conjunction with the complex loading situation—literature about the root causes for adhesive joint failure in blades is scarce. This paper presents a comprehensive numerical investigation of energy release rates at the tip of a transversely oriented crack in the trailing edge of a 34m long blade for a 1.5MW wind turbine. First, results of a non‐linear finite element analysis of a 3D blade model, compared with experimental data of a blade test conducted at Danmarks Tekniske Universitet (DTU) Wind Energy (Department of Wind Energy, Technical University of Denmark), showed to be in good agreement. Subsequently, the effects of geometrical non‐linear cross‐section deformation and trailing‐edge wave formation on the energy release rates were investigated based on realistic aeroelastic load simulations. The paper concludes with a discussion about critical loading directions that trigger two different non‐linear deformation mechanisms and their potential impact on adhesive trailing‐edge joint failure. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献