首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Materialia》1999,47(8):2323-2330
The tensile and compressive stress–strain behaviour of closed cell aluminium alloy foams (trade name “Alulight”) has been measured and interpreted in terms of its microstructure. It is found that the foams are anisotropic, markedly inhomogeneous and have properties close to those expected of an open cell foam. The unloading modulus and the tensile and compressive yield strengths increase non-linearly with relative density. The deformation mechanisms were analysed using image analysis software and a d.c. potential drop technique. The scatter in results is attributed to imperfections within the foam. These include non-uniform density, weak oxide interfaces, and cell faces containing voids and cracks.  相似文献   

2.
A three-dimensional elastoplastic phase-field model is developed to study the microstructure evolution during strain-induced martensitic transformation in stainless steels under different stress states. The model also incorporates linear isotropic strain hardening. The input simulation data is acquired from different sources, such as CALPHAD, ab initio calculations and experimental measurements. The results indicate that certain stress states, namely uniaxial tensile, biaxial compressive and shear strain loadings, lead to single variant formation in the entire grain, whereas others, such as uniaxial compressive, biaxial tensile and triaxial strain loadings, lead to multivariant microstructure formation. The effects of stress states, strain rate as well as temperature on the mechanical behavior of steels are also studied. The material exhibits different yield stresses and hardening behavior under different stress states. The equivalent stress is higher at low strain rate, whereas a higher elongation is obtained at high strain rate. The deformation temperature mainly affects the hardening behavior of the material as well as the transformation, i.e. martensite volume fraction decreases with increasing temperature. Some of the typical characteristics of strain-induced martensite, such as the formation of thin elongated martensite laths, shear band formation and nucleation of martensite in highly plasticized areas, as well as at shear band intersections, are also observed.  相似文献   

3.
A repeating element composed of four cell struts in a pentagonal dodecahedron model is used to analyze the creep-buckling of open-cell foams. The solid making up the cell struts is assumed to follow power-law creep. As a result, the theoretical expression for describing the failure time for the onset of creep-buckling of open-cell foams under uniaxial compression is obtained. Theoretical results indicate that the creep-buckling of open-cell foams depends on their relative density and microstructural imperfection and the creep parameters of solid cell struts. Furthermore, a simple relationship between creep strain rate and failure time is proposed for the creep-buckling of open-cell foams and then compared to the existing experimental results; they agree well. In addition, cell-strut creep-buckling is the dominant failure mechanism when the imposed compressive stress is close to the elastic buckling strength of open-cell foams. However, cell-strut creep-rupturing is more likely to occur when the imposed compressive stress becomes smaller. Moreover, the transition of failure mechanism from cell-strut creep-buckling to cell-strut creep-rupturing is discussed.  相似文献   

4.
The paper focuses on characterisation of yielding and post-yield behaviour of metals with closed-cell cellular structure when subjected to multiaxial dynamic loading, considering the influence of the relative density, base material, strain rate and pore gas pressure. Research was conducted by extensive parametric fully-coupled computational simulations using the finite element code LS-DYNA. Results have shown that the macroscopic yield stress of cellular material rises with increase of the relative density, while its dependence on the hydrostatic stress decreases. The yield limit also rises with increase of the strain rate, while the hydrostatic stress influence remains more or less the same at different strain-rates. The macroscopic yield limit of the cellular material is also strongly influenced by the choice of base material since the base materials with higher yield limit contribute also to higher macroscopic yield limit of the cellular material. By increasing the pore gas filler pressure the dependence on hydrostatic stress increases while at the same time the yield surface shifts along the hydrostatic axis in the negative direction. This means that yielding at compression is delayed due to influence of the initial pore pressure and occurs at higher compressive loading, while the opposite is true for tensile loading.  相似文献   

5.
1 INTRODUCTIONDuetospecialmaterialstructureofshortfiberreinforcedmetalmatrixcomposite (SFRMMC) ,thematrixandthefibredeformevidentlynon uniformly .Thisnon uniformdeformationcanbefurtheren hancedduetothepresenceofthermalresidualstresses(TRS)developedduringco…  相似文献   

6.
The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper.The experimental results indicate that the defo...  相似文献   

7.
A novel limiting strain energy strength theory   总被引:1,自引:0,他引:1  
With applied dislocation theory, the effects of shear and normal stresses on the slide and climb motions at the same section of a crystal were analyzed. And, based on the synergetic effect of both normal and shear strain specific energies, the concept of the total equivalent strain specific energy (TESSE) at an oblique section and a new strength theory named as limiting strain energy strength theory (LSEST) were proposed. As for isotropic materials, the plastic yielding or brittle fracture of under uniaxial stress state would occur when the maximum TESSE reached the strain specific energy, also the expressions on the equivalent stresses and a function of failure of the LSEST under different principal stress states were obtained. Relationship formulas among the tensile, compressive and shear yield strengths for plastic metals were derived. These theoretical predictions, according to the LSEST, were consistent very well with experiment results of tensile, compressive and torsion tests of three plastic metals and other experiment results from open literatures. This novel LSEST might also help for strength calculation of other materials.  相似文献   

8.
Isothermal molecular dynamics is used to study the correlation between the spatial distribution of internal stress and mechanical deformation of a 6.7-nm-diameter Al nanowire with <1 0 0> axis is subjected to an external uniaxial stress. The stress–strain relationship is asymmetrical. In the case of a tensile load, the internal stress distribution is found to result from the interplay between structure and morphology. As a general rule, yielding nucleates where the internal stress gradient is the highest. If the Al wire is interfaced with a harder material—Ni in this study—the highest gradients occur at the interface, where a characteristic interfacial stress pattern is induced. Remarkably, compressive and tensile yield strengths are found to be unaffected by the hard/soft interfaces. The structure of the stress–strain relationship is found to correlate with identified discrete plastic events. These may be complex, involving interactions between partial dislocations, stacking faults, surfaces and interfaces, internal stress localization and release.  相似文献   

9.
Microtwins are frequently observed in face-centered-cubic (fcc) metal nanowires with low stacking fault energy. The authors have previously reported that the tensile yield strength of copper nanowires can be increased by the presence of twin boundaries. In this work simulations are carried out under both uniaxial tension and compression loading, to demonstrate that the strengthening effects are inherent to these nanowires, independent of the loading condition (tensile/compressive). It appears that the strengthening mechanism of the twinned nanowires can be attributed to stress redistribution due to the change of crystallographic orientations across twin boundaries, which requires larger external stress to make them yield as compared to the twin-free wire.  相似文献   

10.
《Acta Materialia》1999,47(9):2685-2694
An investigation is performed on the mechanical response of a family of ceramic microballoon reinforced aluminum matrix composites under both uniaxial compression and constrained die compression loadings. The key material parameters that are varied are the matrix strength and the ratio of wall thickness t to radius R of the microballoons. Uniaxial compressive failure initiates at relatively small strains (≈1–2%) and occurs through a process of crushing and collapse of the material within a localized deformation band. Under constrained die conditions, localization is suppressed and the flow stress increases monotonically with increasing strain. The latter response is well described by Gurson's constitutive law for plastic yielding of porous ductile metals, with an effective strength that depends on the relative wall thickness, t/R. Furthermore, the energy absorption capacity (≈60–70 MJ/m3) is extremely high in comparison with values that are typical of metal foams. The results suggest that the microballoon composites may be attractive for applications requiring a high resistance to penetration by projectiles or other forms of local intrusion, in combination with a high compressive strength.  相似文献   

11.
Multiaxial deformation behavior and failure surface of rigid polyurethane foams were determined using standard experimental facilities. Two commercial foams of different densities were assayed under uniaxial, biaxial, and triaxial stress states. These different stress states were reached in a uniaxial universal testing machine using suitable testing configurations which imply the use of special grips and lateral restricted samples. Actual strains were monitored with a video extensometer. Polyurethane foams exhibited typical isotropic brittle behavior, except under compressive loads where the response turned out to be ductile. A general failure surface in the stress space which accounts for density effects could be successfully generated. All of failure data, determined at the loss of linear elasticity point, collapsed in a single locus defined as the combination of a brittle crushing of closed-cell cellular materials criterion capped by an elastic buckling criterion.  相似文献   

12.
Effects of cell size on compressive properties of aluminum foam   总被引:3,自引:0,他引:3  
1 Introduction Metal foams are a relatively new class of structural materials and offer a variety of applications in fields such as lightmass construction or crash energy management. In view of potential applications, the mechanical properties of foamed m…  相似文献   

13.
1 INTRODUCTIONDuetolargerdifferenceinthermalexpansionco efficientbetweenthefiberandthematrixandspecialgeometricalshapeofthefiber ,thethermalresidualstresses (TRS) generatedduringcoolingfromhigh(processing)temperaturetoroomtemperaturehaveimportantinfluence…  相似文献   

14.
Five types of tensile tests were conducted to study the yield behavior of 2A12-T4 aluminum alloy. Parallel finite element models were built for each test and solved with ABAQUS with different yield criterions. The result shows that any of the four criterions: von Mises yield criterion, Tresca criterion, Twin-Shear criterion and yon Mises criterion with hydrostatic pressure correction, overestimates the yield strengths of the specimens. Rather than hydrostatic pressure, Lode stress parameter is the key factor that affects the differences between experimental and simulation results. Based on this concept, a new yield model with Lode dependence modified from yon Mises criterion is postulated. Although one more parameter needs to be confirmed, the simulation results of this yield model are better than those of other criterions.  相似文献   

15.
通过准静态单轴压缩和径向约束轴向压缩实验,研究了闭孔泡沫铝的尺寸效应,分析了试件尺寸(直径和高度)和密度对泡沫材料力学性能的影响。结果表明:单轴压缩时闭孔泡沫铝力学性能具有较为明显的尺寸效应,而径向约束轴向压缩时闭孔泡沫铝的尺寸效应不明显。两种加载情况下,密度都对闭孔泡沫铝的力学性能有着明显的影响。与单轴压缩相比,径向约束轴向压缩时闭孔泡沫铝的屈服应力和平台应力随密度的变化更为显著。  相似文献   

16.
Yielding in metallic glasses is often described in terms of the Mohr–Coulomb criterion, τ + μσ ≥ τ0. It suggests that a material yields when a combination of shear (τ) and normal stresses (σ), linked through the friction coefficient (μ), reaches the critical shear stress (τ0). In this paper, an increase of the friction coefficient for increasing Poisson ratio is foreseen, if the elastic limit observed under uniaxial (tensile or compressive) and shear stresses remain constant. Experimental values of Young and shear moduli and Poisson ratio of metallic glasses have been collected from the literature. Compressive and tensile yield stresses have been also collected and elastic limits have been calculated. The elastic limit observed under compressive stress decreases with increasing Poisson ratio and it appears similar for metallic glasses based on the same metals. The values of the friction coefficient for metallic glasses have been obtained from the fracture angle observed under uniaxial stress (compressive or tensile) and from the ratio between compressive and tensile strength. Experimental data of the friction coefficient appear rather scattered and a clear trend as a function of Poisson ratio cannot be outlined. The increase of toughness of metallic glasses with increasing Poisson ratio has been ascribed to the corresponding reduction of the compressive elastic limit.  相似文献   

17.
Closed-cell Al-Si alloy foams have been prepared by melt route. The cell shape anisotropy ratio of Al-Si alloy foams specimens in relative density range of 0.11-0.39 were measured. The quasi-static compressive tests show that Al-Si alloy foams have higher plastic collapse stress in the longitudinal direction (LD) than in the transverse direction (TD). The plastic collapse stress ratio increases with cell shape anisotropy ratio, which is basically in agreement with Gibson and Ashby model. Moreover, energy absorption capacity of Al-Si alloy foams was investigated. The results show that the energy absorption capacity in the LD is higher than that in the TD.  相似文献   

18.
利用DIL-805ADT动态相变膨胀仪测定了5CrNiMoV钢在低于奥氏体屈服强度的应力下的马氏体相变膨胀曲线,根据膨胀曲线分析并计算出了不同应力下Greenwood-Johnson相变塑性机制中的相变塑性系数k值和Koistinen-Marburger马氏体相变动力学模型中α和Ms的值,并且将Greenwood-Johnson模型和Leblond模型计算结果与实际试验值对比。结果显示:k值随应力的变化有所波动,但趋近于一个定值;通过对比,Leblond模型更符合试验结果;Ms点随着应力的增大呈现微小的上升趋势,说明小于或等于80 MPa 的应力对Ms点的影响不显著;拉应力下α值普遍大于无应力下的α值,压应力下α值普遍小于无应力下的α值,说明拉应力对相变有一定的促进作用,压应力对相变有一定的阻碍作用。  相似文献   

19.
Closed-cell AlSi9Mg foams and SiCp/AlSi9Mg composite foams with different SiCp volume fractions were prepared successfully by means of direct foaming of melt using CaCO3 blowing agent in this paper. The compressive behaviors of these foams were studied. In comparison with the compressive stress–strain curve of AlSi9Mg foams that of SiCp/AlSi9Mg composite foams is not smooth and exhibits some serrations. At the same relative density of composite foams, the yield stress and collapse stress of the composite foams increase with increasing SiCp volume fraction. The relationship of yield stress, relative density and SiCp volume fraction of SiCp/AlSi9Mg composite foams with a given particle size was obtained.  相似文献   

20.
This paper analyzed the relationships between the extrusion conditions, grain size, and yield strength of an Mg-7Sn-1Al-1Zn alloy, which was extruded at different initial billet temperatures and ram speeds, and developed empirical models to predict the grain size and yield strengths. The results revealed that grain size increases as the extrusion temperature and ram speed increase, resulting in a decrease of the tensile and compressive yield strengths due to reduced effect of grain boundary strengthening. It was also found that the exit temperature is a key determinant of grain size and yield strength, i.e. as the exit temperature decreases, the grain size decreases while the tensile and compressive yield strengths increase. The grain size and yield strength prediction models, which provide results as a function of temperature and strain rate, were developed by considering the extrusion temperature and speed dependencies of the exit temperature, and the predicted results showed a good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号